The Molecular Foundry of the Lawrence Berkeley National Laboratory (Berkeley, California) and abeam Technologies (Berkeley, California) recently published results of initial studies of a new technology that opens a unique route to develop spectrometer-on-chip.
The Molecular Foundry of the Lawrence Berkeley National Laboratory (Berkeley, California) and abeam Technologies (Berkeley, California) recently published results of initial studies of a new technology that opens a unique route to develop spectrometer-on-chip. The paper, “Multiband Wavelength Demultiplexer Based on Digital Planar Holography for On-Chip Spectroscopy Applications” appeared in Optics Letters in February.
The report discusses the initial testing of a novel type of multiband wavelength demultiplexer for on-chip spectroscopy applications. The devices are based on computer-designed digital planar holograms, which involve millions of lines specifically located and oriented in order to direct output in the visible range (477.2-478.0 nm, 528-529.9 nm, 586.4-587.7 nm, 628.9-630.4 nm) with 96 channels and spectral channel spacing down to 0.0375 nm/channel.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.