November 25th 2024
Researchers in China have developed a novel workflow for near-infrared reflectance spectroscopy (NIRS or NIR) that enhances the detection of low-level petroleum hydrocarbon pollution in soils, revealing new diagnostic features and significantly improving sensitivity for environmental monitoring.
September 30th 2024
September 27th 2024
How Are ICP Methods Being Used in the Petroleum and Biofuels Industry?
February 17th 2016Inductively coupled plasma (ICP) techniques, such as ICP coupled with mass spectrometry (ICP-MS) and ICP–optical emission spectroscopy (OES), have seen a lot of growth in recent years for the direct analysis of organic samples such as petroleum and biofuels. José-Luis Todolí, a professor at the University of Alicante in Spain, has conducted several studies in this area, including the elemental determination of metals in bioethanol using ICP-OES, and the use of a torch integrated sample introduction system as well as ICP-MS to analyze petroleum products and biofuels. He recently spoke to us about this work and other projects involving ICP techniques that his group is focused on.
Raman Spectroscopy and Imaging of Low Energy Phonons
September 1st 2015Raman bands in the low energy region of the spectrum of crystals are attributed to so-called external lattice vibrational modes. The Raman bands from these external vibrational modes (low energy phonons) are very sensitive to crystal structure and orientation with respect to the incident laser polarization and to molecular interactions within the crystal. The low energy vibrational modes of many organic molecular crystals have very high Raman scattering cross-sections. Raman spectra and images of low energy phonons in so-called two dimensional (2D) crystals such as few-layer MoS2 reveal spatial variations in the solid state structure that are not evident in the higher energy bands.
US Department of Energy Unveils New Microscope for Materials Science
December 5th 2011A new class of x-ray photoelectron spectroscopic microscope has been developed at the U.S. Department of Energy?s Brookhaven National Laboratory (Upton, New York) and will be used for advanced research on a wide range of technologically important materials systems.
Analysis of Lignin and Cellulose in Biological Energy Sources by Raman Microscopy
February 1st 2010Cellulosic feedstocks from biological harvests (such as timber, prairie grass, and corn stover) or industrial–urban waste have been proposed as a source for the production of energy in the form of fermentation-produced ethanol biofuel.