Combined Raman and Photoluminescence Imaging of Two-Dimensional WS2
March 1st 2021Raman and photoluminescence spectroscopy were combined with imaging to examine the spatial variation of solid-state structure and electronic character of two-dimensional (2-D) tungsten disulfide (WS2) crystals, which represent a family of new inorganic 2-D materials.
Assignment of Raman Bands of a Set of Biopolymers with Small Increases in an Added Functional Group
February 1st 2021Raman spectra were measured in combination with 2D-COS analysis to understand how the addition of propyl side groups to a biopolymer backbone influences the structure of the polymer at the atomic level.
Very Low Frequency Measurements of Linear Alkanes
November 1st 2020Low frequency Raman scattering measurements can be used to predict physical properties of polymers and the crystalline polymorphic form of active pharmaceutical ingredients (APIs). These measurements are made by recording the Stokes and anti-Stokes side of the laser line with the laser centered on the detector. Spectra of polyethylene and linear alkanes were recorded down to 4 cm-1.
Effect of Layer Number and Crystal Stacking Orientation on the Raman Spectra of Two-Dimensional MoS2
March 1st 2020Raman imaging provides detailed crystal orientation information for two-dimensional MoS2 prepared by chemical vapor deposition on silicon substrates. These two-dimensional crystals consist of individual atomic layers of sulfur, molybdenum, and sulfur atoms.
Raman Thermometry: Understanding the Mathematics to Better Design Raman Measurements
December 1st 2019Raman measurements can be used to infer the temperature of a material based on the Stokes and anti-Stokes band signal strengths, and by applying a predefined mathematical relationship. In reality, the temperature, Raman shift, and laser excitation wavelength all interact, and should be considered to better understand these measurements.
Raman Analysis of Ethylene Vinyl Acetate Copolymers–Using 2D-COS for Identifying Structural Changes
November 1st 2019Raman 2D-COS spectral data provide information on conformational changes of polymers. Here, Raman spectra of ethylene vinyl acetate and vinyl acetate copolymer are measured and interpreted, enabling a description of morphological changes related to the vinyl acetate group.
Stress, Strain, and Raman Spectroscopy
September 1st 2019When stress is applied to an object, it can produce strain. Strain can be detected through changes in peak position and bandwidth in Raman spectra. Here, we show examples of how strain in technologically important materials appears in the Raman spectra.
Measurement of the Temperature Dependence of Water Using a Near-Infrared Raman Spectrograph
June 1st 2019The spectral behavior of water is studied using Raman with an NIR spectrograph and dual wavelength lasers for measurements of both the fingerprint and the OH stretching regions. Raman spectra are recorded between 5 ⁰C and 80 ⁰C, and treated with both band-fitting and the 2D-COS algorithm revealing improved insights into the spectral behavior of water.
Raman Spectroscopy and Polymorphism
March 1st 2019The differentiation of polymorphs is important, particularly in the pharmaceutical industry. We demonstrate the practicality of using Raman spectroscopy to differentiate crystal forms for polymorph characterization and screening, and explain aspects of chemical bonding and solid state structure that affect the Raman spectra of crystal lattice vibrational modes.
Use of Raman Spectroscopy and 2D-COS for the Detection and Characterization of Chemical Interactions
February 1st 2019Two-dimensional correlation spectroscopy (2D-COS) can reveal subtle chemical interactions that are difficult to discern when analyzing individual spectra. A demonstration of the subtleties of this technique can be seen in the analysis of ethanol–water and ethanol–methanol mixtures.
Heterocorrelation Using Polarized Raman Spectra in the Characterization of Polymers
November 1st 2018Spectral changes revealed by two-dimensional correlation spectroscopy can be used to interpret structural changes in polymers determined by processing conditions, so that materials can be rationally engineered for particular applications with known mechanical requirements.
Effect of Dopants or Impurities on the Raman Spectrum of the Host Crystal
December 1st 2017Raman spectroscopy is a convenient method for probing the chemical bonding and solid state structure of crystals, and it is sensitive to the presence of dopants, impurities, and crystal defects in the host-crystal lattice. Here is what you need to know about how a hostcrystal Raman spectrum is affected by dopants and impurities.
Raman Microscopy Combined with Tensile Deformation for Understanding Changes in Polymer Morphology
November 1st 2017We show Raman spectra of polymeric fibers acquired as a function of increasing stress and temperature. With knowledge of Raman band assignments, it becomes possible to understand, in detail, the molecular changes that are responsible for polymer orientation and crystallization.
The Effect of Microscope Objectives on the Raman Spectra of Crystals
September 1st 2017The Raman spectra of a particular face of a single crystal can be significantly different if acquired with different microscope objectives. This article explains the underlying physics of changes in relative intensity and even peak position of certain Raman bands depending on the microscope objective used to acquire the spectrum.
Why Are the Raman Spectra of Crystalline and Amorphous Solids Different?
March 1st 2017The Raman spectra of crystalline and amorphous solids of the same chemical composition can be significantly different primarily because of the presence or absence of spatial order and long range translational symmetry, respectively. The purpose or goal of this installment of Molecular Spectroscopy Workbench is to help readers understand the underlying physics that affect the Raman spectra of crystalline and amorphous solids. Wave vector, reciprocal space, and the Brillouin zone are explained with respect to Raman spectroscopy of solids.
Raman Polarization Measurements: Keeping Track of the Instrumental Components’ Behavior
February 1st 2017Controlling the orientation of the laser and Raman polarization relative to the sample orientation can provide a wealth of information in the Raman spectrum that would be difficult to achieve by other methods. Presentation of the spectra makes these effects appear straightforward, but because of multiple instrumental factors, and experimental design, it is easy to produce erroneous results. This column is going to explain what instrumental components affect the polarization effects that are observed, and how the sample setup itself affects the Raman signal.
Characterizing Modified Celluloses Using Raman Spectroscopy
November 1st 2016Raman spectra of celluloses modified for use in the pharmaceutical, food, and materials industries will be compared and analyzed, with the goal of determining spectroscopic features that can be of use in aiding in the determination of physical and chemical properties.
Photoluminescence Spectroscopy Using a Raman Spectrometer
September 1st 2016Photoluminescence can provide information about the composition and solid state structure of a material. The high spectral resolution of a Raman spectrometer can be useful in performing photoluminescence spectroscopy of solid state materials, particularly when the emission spectra consist of narrow bands or even lines. Having the capability to perform photoluminescence and Raman spectroscopies simultaneously with the same instrument is advantageous, especially when studying 2D crystals. When used to perform photoluminescence spectroscopy, the Raman spectrometer becomes two instruments in one.
Selecting an Excitation Wavelength for Raman Spectroscopy
March 1st 2016Were it not for the problem of photoluminescence, only one laser excitation wavelength would be necessary to perform Raman spectroscopy. Here, we examine the problem of photoluminescence from the material being analyzed and the substrate on which it is supported. Selecting an excitation wavelength that does not generate photoluminescence reduces the noise level and yields a Raman spectrum with a superior signal-to-noise ratio. Furthermore, we discuss the phenomenon of resonance Raman spectroscopy and the effect that laser excitation wavelength has on the Raman spectrum.
Raman Mapping of Spectrally Non-Well-Behaved Species
February 1st 2016The use of Raman spectroscopy to produce material images whose contrast is derived from chemical or crystallographic species has been seen as quite useful since the introduction of the Raman microscope in 1976, but particularly, more recently, with the development of more sensitive and easier-to-use instruments. When the various species in the field of view have spectra with non-overlapping analytical bands, simple univariate analysis can provide good images. When overlapping bands are present, multivariate techniques, especially MCR (Multivariate Curve Resolution), have been successfully applied. However, there are cases where even MCR results may be problematic. We will look at some maps of a ceramic composite containing SiC, Si, B4C, and Carbon, where each of these species has non-unique spectra to see what type of results flexible software can produce. What is the goal in this type of exercise? For some of us, creating images is like a teenager’s computer game. But really what we are trying to do is to extract information about a sample from its Raman image. A beautiful rendition is nice, but it must yield information. The following will show how Raman maps can provide useful information on a sample.
SERS: An Update of Progress Made
November 1st 2015This column is a mini survey of progress that has been made over the last few years in surface enhanced Raman scattering (SERS). The potential of SERS to provide signals of analytes at very low concentrations continues to beckon the analytical chemist. What the last years have produced is a body of work showing the role of the physical properties of metals, based on their geometrical and electronic properties, in enhancing the signals. As this field matures, we foresee production of surface enhancing films and particles that will provide reproducible Raman signals for applications in areas such as environmental and biomedical studies.
Raman Spectroscopy and Imaging of Low Energy Phonons
September 1st 2015Raman bands in the low energy region of the spectrum of crystals are attributed to so-called external lattice vibrational modes. The Raman bands from these external vibrational modes (low energy phonons) are very sensitive to crystal structure and orientation with respect to the incident laser polarization and to molecular interactions within the crystal. The low energy vibrational modes of many organic molecular crystals have very high Raman scattering cross-sections. Raman spectra and images of low energy phonons in so-called two dimensional (2D) crystals such as few-layer MoS2 reveal spatial variations in the solid state structure that are not evident in the higher energy bands.
Current Uses of Raman Microscopy in Biomedical Studies
June 1st 2015There is growing interest in using Raman as a spectroscopic probe of biological systems based on its high information content, its compatibility with an aqueous environment, and the spatial resolution that is consistent with physical optics (as good as ~0.5 μm).
Resonance Raman and Photoluminescence Spectroscopy and Imaging of Few-Layer MoS2
March 1st 2015Resonance and off-resonance Raman spectroscopy and imaging are used to examine the spatial variation of the solid-state structure and electronic character of few-layer MoS2 flakes. Simultaneous acquisition of photoluminescence spectra with the Raman scattering provides complementary ways of rendering Raman and photoluminescence spectral images of thin-film MoS2.
Three-Dimensional Raman Imaging of Ion-Exchanged Waveguides
December 1st 2014Segmented channel waveguides have been fabricated in single-crystal KTiOPO4 through a topotactic process of partial cation exchange. The ion-exchanged waveguides maintain the high nonlinear susceptibility of KTiOPO4 to function as frequency doubling laser light sources
Three-Dimensional Raman Imaging of Ion-Exchanged Waveguides
December 1st 2014Segmented channel waveguides have been fabricated in single-crystal KTiOPO4 through a topotactic process of partial cation exchange. The ion-exchanged waveguides maintain the high nonlinear susceptibility of KTiOPO4 to function as frequency doubling laser light sources
Raman Imaging of Silicon Structures
September 1st 2013What exactly is a "Raman image" and how is it rendered? The authors explain those points, and demonstrate the use of Raman imaging for the characterization of thin-film and ion-implanted silicon structures. High spectral resolution makes it possible to resolve or contrast the substrate silicon and polysilicon film in Raman images and thus aids in the chemical or physical differentiation of spectrally similar materials.
Micro-Raman Spectroscopy of Crystal Lattice Chemistry
September 1st 2012Micro-Raman spectroscopy has been used to depth-profile a waveguide produced by an ion-exchange reaction in a single crystal of a ferroelectric metal oxide, and to reveal the changes in chemical bonding and atomic structure that occur in this process.
Analytical Vibrational Spectroscopy - NIR, IR, and Raman
October 1st 2011How can you navigate the maze of choices for detecting molecular vibrations with mid-infrared (IR), near IR (NIR), and visible (Raman)? Understanding what is being measured, how it is measured, and the advantages and disadvantages of each technique, will help.
Analysis of Lignin and Cellulose in Biological Energy Sources by Raman Microscopy
February 1st 2010Cellulosic feedstocks from biological harvests (such as timber, prairie grass, and corn stover) or industrial–urban waste have been proposed as a source for the production of energy in the form of fermentation-produced ethanol biofuel.
Raman Applications That Are Driving a Rapidly Expanding Market
March 1st 2008Chemical analysts who use spectroscopy to extract molecular information from samples have been following the developments in Raman instrumentation. Vibrational spectroscopy provides detailed molecular information, but Fourier-transform IR has been much easier to use than Raman. Now that Raman equipment is smaller, cheaper, faster, and easier, analysts are interested. Columnist Fran Adar will discuss why.
Surface-Enhanced Raman Scattering
February 1st 2008Columnist Fran Adar discusses surfaced-enhanced Raman scattering (SERS). The phenomenon is described and the enhancement factors that make it so attractive for analytical purposes are pointed out. In particular, she reviews the state-of-the-art from the point of view of the instrumentation and the robustness of the measurements.
Raman Micro Imaging - What Was a Concept in 1975 Is Now a Reality
November 1st 2007Raman microscopy was developed as a tool for microanalysis complementary to the electron microscope, which enabled identification of the elements in a microspot. The first realization for Raman imaging was implemented using a nonconfocal optical method. Subsequently, a confocal scheme was developed, which provided better contrast in the Raman image. A number of successful examples from pathology, pharmaceutical analysis, and geology will be shown.
SIFT-MS: Gas-Phase Chemistry - MS with a Difference
March 1st 2007Guest author Rebecca Bain of SYFT Technologies discusses a new technique for VOC analysis. SIFT-MS can be used successfully in a wide variety of applications, including medical research, shipping container air analysis, laboratory analysis, and air-quality monitoring.