October 2nd 2025
The StellarScope AM/PA Raman Particle Analyzer, launched by StellarNet Inc., is an advanced analytical platform that merges automated mapping with particle analysis.
William G. Fateley: Scholar, Editor, and Innovator in Vibrational Spectroscopy
September 15th 2025This Icons of Spectroscopy Series article features William George “Bill” Fateley, who shaped modern vibrational spectroscopy through landmark reference books and research papers, pioneering instrumentation, decades of editorial leadership, and deep commitments to students and colleagues. This article reviews his career arc, scientific contributions, and enduring legacy.
Demystifying the Black Box: Making Machine Learning Models Explainable in Spectroscopy
September 8th 2025This tutorial provides an in-depth discussion of methods to make machine learning (ML) models interpretable in the context of spectroscopic data analysis. As atomic and molecular spectroscopy increasingly incorporates advanced ML techniques, the black-box nature of these models can limit their utility in scientific research and practical applications. We present explainable artificial intelligence (XAI) approaches such as SHAP, LIME, and saliency maps, demonstrating how they can help identify chemically meaningful spectral features. This tutorial also explores the trade-off between model complexity and interpretability.
Error Bars in Chemometrics: What Do They Really Mean?
August 25th 2025This tutorial contrasts classical analytical error propagation with modern Bayesian and resampling approaches, including bootstrapping and jackknifing. Uncertainty estimation in multivariate calibration remains an unsolved problem in spectroscopy, as traditional, Bayesian, and resampling approaches yield differing error bars for chemometric models like PLS and PCR, highlighting the need for deeper theoretical and practical solutions.
Advanced Spectroscopy Techniques Improve Microplastics Identification and Characterization
August 21st 2025Researchers from Brazil have developed an improved method combining infrared and Raman spectroscopic techniques to better identify and characterize microplastics. This integrated approach enhances accuracy in distinguishing various polymer types and provides refined spectral analysis crucial for environmental studies.
Raman Spectroscopy and Machine Learning Show Promise for PFAS Detection
August 21st 2025Raman spectroscopy, combined with computational modeling and machine learning, shows strong potential for distinguishing PFAS compounds, offering a promising new framework for environmental monitoring and contamination analysis.
New Technique Combines Raman Spectroscopy and AI to Accurately Detect Microplastics in Water
August 19th 2025Researchers have developed a novel approach to quantify microplastics in water environments by combining Raman spectroscopy with convolutional neural networks (CNN). This integrated method enhances the accuracy and speed of microplastic identification, offering a promising tool for environmental monitoring.
Lucidity and Light: The Spectroscopic Legacy of E. Bright Wilson, Jr.
August 18th 2025This Icons of Spectroscopy Series article features E. Bright Wilson, a pioneer of chemical physics. Wilson’s contributions to infrared, Raman, and microwave spectroscopy provided the theoretical and practical foundation for analyzing molecular structure and dynamics. As a revered professor at Harvard and coauthor of landmark texts, he mentored nearly 150 students and researchers, leaving a lasting legacy of scientific excellence and integrity.
Universal Calibration: Can Models Travel Successfully Across Instruments?
August 11th 2025Inter-instrument variability is a major obstacle in multivariate spectroscopic analysis, affecting the reliability and portability of calibration models. This tutorial addresses the theoretical and practical challenges of model transfer across instruments. It covers spectral variability sources—such as wavelength shifts, resolution differences, and line shape variations—and presents key standardization techniques including direct standardization (DS), piecewise direct standardization (PDS), and external parameter orthogonalization (EPO). We discuss the underlying mathematics of these approaches using matrix notation and highlight limitations that must be considered for reliable universal calibration.
New Study Reveals How Hawaiian Magma Storage Deepens with Volcano Evolution
August 5th 2025A new study reveals that as Hawaiian volcanoes evolve, their magma storage shifts from shallow crustal reservoirs to deeper mantle zones, offering critical insights into volcanic behavior and future hazard potential.
Cost-Effective Nanoparticles Help Detect Bacterial Stress via Raman Spectroscopy in New Pilot Study
August 4th 2025Researchers at the Czech Academy of Sciences have demonstrated that cost-effective silver and gold nanoparticles, used with surface-enhanced Raman spectroscopy (SERS), can sensitively detect stress-induced adenine release in bacteria, paving the way for rapid, point-of-care diagnostic tools.
Best of the Week: Catalyst Surfaces, Biomedical Applications of Raman Spectroscopy
August 1st 2025Top articles published this week include an interview with Shreya Singh, a tutorial about using Raman spectroscopy to probe water content and structures in biological tissues, and an article about detecting honey adulteration using near-infrared (NIR) spectroscopy.
New Raman Probe Shows Promise for Real-Time Soft Tissue Sarcoma Detection During Surgery
July 30th 2025Researchers from Université de Montréal have demonstrated that a new handheld Raman spectroscopy device, the UltraProbe, can accurately and rapidly detect retroperitoneal soft tissue sarcomas during surgery, offering real-time tissue analysis that could improve surgical outcomes.