Jerome Workman, Jr. is an Executive Editor for Spectroscopy. Direct correspondence about this article to jworkman@mjhlifesciences.com
The Quest for Universal Spectral Libraries: Standards, Metadata, and Machine Readability
October 6th 2025This tutorial examines the development of universal spectral libraries, reviewing standardization efforts, mathematical frameworks, and practical examples across multiple spectroscopies, while emphasizing metadata harmonization, FAIR principles, and the emerging role of AI in building interoperable, machine-readable repositories. This remains an unsolved problem in spectroscopy.
Interstellar Comet 3I/ATLAS Shows Mysterious Spectroscopic Activity
October 2nd 2025New observations of interstellar comet 3I/ATLAS, the third known interstellar object ever to visit our solar system, reveal unexpected activity and composition, challenging many previous assumptions about interstellar objects.
The Red Visitor from Beyond: Unlocking the Secrets of Interstellar Object 3I/ATLAS
October 1st 2025Newly captured spectroscopic data of the third-ever known interstellar object, 3I/ATLAS, reveals a red, organic-rich surface and an enigmatic early dust coma, providing unprecedented insight into materials from beyond our solar system.
Interstellar Comet 3I/ATLAS Shows Its Spectral Secrets Through Palomar and Apache Point Observations
Published: September 30th 2025 | Updated: September 30th 2025Astronomers have conducted detailed spectrophotometric observations of the mysterious interstellar comet 3I/ATLAS using the Palomar 200-inch and Apache Point telescopes. The findings reveal unexpected activity and unique spectral features, enhancing our understanding of this cosmic visitor.
3I/ATLAS: An Interstellar Enigma—Natural Comet or Engineered Probe?
September 29th 2025The interstellar object 3I/ATLAS, discovered in July, has captivated astronomers with its unusual characteristics. While some scientists attribute its behaviors to natural cometary processes, others propose more speculative theories, including the possibility of it being an artificial probe. This article examines both mainstream and speculative interpretations of 3I/ATLAS's anomalous features. Other news articles this week will look specifically at the spectroscopic results of telescopes recently analyzing this mysterious object.
Beyond Linearity: Identifying and Managing Nonlinear Effects in Spectroscopic Data
September 24th 2025This tutorial explores the challenges posed by nonlinearities in spectroscopic calibration models, including physical origins, detection strategies, and correction approaches. Linear regression methods such as partial least squares (PLS) dominate chemometrics, but real-world data often violate linear assumptions due to Beer–Lambert law deviations, scattering, and instrumental artifacts. We examine extensions beyond linearity, including polynomial regression, kernel partial least squares (K-PLS), Gaussian process regression (GPR), and artificial neural networks (ANNs). Equations are provided in full matrix notation for clarity. Practical applications across near-infrared (NIR), mid-infrared (MIR), Raman, and atomic spectroscopies are discussed, and future research directions are outlined with emphasis on hybrid models that integrate physical and statistical knowledge.
Noninvasive Glucose Monitoring Using Spectroscopic Methods
September 23rd 2025Despite decades of major monetary investment for applied research in multiple spectroscopic sensing technologies, achieving an accurate, portable, and painless noninvasive glucose monitor remains a major unmet goal in diabetes care. This goal is extremely difficult due to persistent challenges with sensitivity, analyte specificity, accuracy, calibration stability, and biological interference.
From Classical Regression to AI and Beyond: The Chronicles of Calibration in Spectroscopy: Part II
September 22nd 2025This Chemometrics in Spectroscopy column traces the historical and technical development of these methods, emphasizing their application in calibrating spectrophotometers for prediction of measured sample chemical or physical properties and explores how AI and deep learning are reshaping the spectroscopic landscape.
Precision Signal Boost for Non-Invasive Blood-Glucose Tests with Advanced FT-IR and Machine Learning
September 17th 2025A new study demonstrates that combining multi-pass FT-IR with a quantum cascade laser, two-dimensional correlation spectroscopy, and machine learning reportedly boosts the accuracy of non-invasive blood-glucose testing. The approach reports a 98.8% classification accuracy, suggesting potential for clinically viable, needle-free diabetes monitoring.
William G. Fateley: Scholar, Editor, and Innovator in Vibrational Spectroscopy
September 15th 2025This Icons of Spectroscopy Series article features William George “Bill” Fateley, who shaped modern vibrational spectroscopy through landmark reference books and research papers, pioneering instrumentation, decades of editorial leadership, and deep commitments to students and colleagues. This article reviews his career arc, scientific contributions, and enduring legacy.
Mid-Infrared Emission Study Proposes New Principle for Noninvasive Blood Sugar Measurement
September 12th 2025A research team in Japan has proposed a new principle, called the emission integral effect, to explain how mid-infrared passive spectroscopic imaging can detect blood glucose levels without invasive methods. Their findings suggest that dilute components like glucose may be more identifiable than concentrated ones when using this technique.
New Infrared Device Measures Blood Sugar Without a Prick
September 11th 2025Researchers have developed a miniature non-invasive blood glucose monitoring system using near-infrared (NIR) technology. The compact, low-cost device uses infrared light to measure sugar levels through the fingertip, offering a painless alternative to traditional finger-prick tests.
Molar Absorptivity Model Powers Near-Infrared Glucose Testing
September 10th 2025Researchers from Sharif University of Technology, Tehran, present an approach using near-infrared absorbance and molar absorptivity to estimate blood glucose with a drawn blood sample—showing comparable performance to methods that apply principal components regression (PCR).
Mini-Tutorial on NIR Aquaphotomics for Rapid, Non-Destructive Biofluid and Food Analysis
September 9th 2025Near-infrared (NIR) spectroscopy combined with aquaphotomics shows potential for a rapid, non-invasive approach to detect subtle biochemical changes in biofluids and agricultural products. By monitoring water molecular structures through water matrix coordinates (WAMACs) and visualizing water absorption spectrum patterns (WASPs) via aquagrams, researchers can identify disease biomarkers, food contaminants, and other analytes with high accuracy. This tutorial introduces the principles, practical workflow, and applications of NIR aquaphotomics for everyday laboratory use.
Demystifying the Black Box: Making Machine Learning Models Explainable in Spectroscopy
September 8th 2025This tutorial provides an in-depth discussion of methods to make machine learning (ML) models interpretable in the context of spectroscopic data analysis. As atomic and molecular spectroscopy increasingly incorporates advanced ML techniques, the black-box nature of these models can limit their utility in scientific research and practical applications. We present explainable artificial intelligence (XAI) approaches such as SHAP, LIME, and saliency maps, demonstrating how they can help identify chemically meaningful spectral features. This tutorial also explores the trade-off between model complexity and interpretability.
NIR Aquaphotomics Milk Analysis Method Detects Johne’s Disease in Dairy Cows
September 4th 2025Researchers have demonstrated a non-invasive method using milk and near-infrared spectroscopy combined with Aquaphotomics to accurately detect Paratuberculosis in dairy cattle. The technique offers faster, more sensitive diagnosis than traditional methods.
Aquaphotomic NIR Spectroscopy Technique Could Rapidly Detect Toxic Aflatoxin in Maize
September 3rd 2025Researchers have demonstrated that visible and near-infrared spectroscopy, combined with chemometric and aquaphotomic analysis, can accurately classify and quantify aflatoxin contamination in white and yellow maize, offering a faster, non-destructive alternative to traditional methods.
NIR Aquaphotomics Blood Test Uses Light With Water Patterns to Detect Esophageal Cancer
September 2nd 2025Researchers have developed a rapid, non-invasive screening method for esophageal squamous cell carcinoma (ESCC) using near-infrared spectroscopy and aquaphotomics. The approach analyzes plasma water patterns, achieving over 95% accuracy in distinguishing patients from healthy controls
Smarter Spectroscopy With a New Machine Learning Approach to Estimate Prediction Uncertainty
August 27th 2025A new study demonstrates how a machine learning technique, quantile regression forest, can provide both accurate predictions and sample-specific uncertainty estimates from infrared spectroscopic data. The work was applied to soil and agricultural samples, highlighting its value for chemometric modeling.
Earle K. Plyler: Setting the Standard in Infrared Spectroscopy
August 26th 2025This Icons of Spectroscopy Series article features Infrared pioneer Earle Keith Plyler (1897–1976), who transformed molecular spectroscopy—building precision techniques, reference data, and instruments that set enduring methods and standards at the National Bureau of Standards (NBS, now NIST). As a teacher and mentor, he established a generation of leaders in molecular spectroscopy.
Error Bars in Chemometrics: What Do They Really Mean?
August 25th 2025This tutorial contrasts classical analytical error propagation with modern Bayesian and resampling approaches, including bootstrapping and jackknifing. Uncertainty estimation in multivariate calibration remains an unsolved problem in spectroscopy, as traditional, Bayesian, and resampling approaches yield differing error bars for chemometric models like PLS and PCR, highlighting the need for deeper theoretical and practical solutions.
Advanced Spectroscopy Techniques Improve Microplastics Identification and Characterization
August 21st 2025Researchers from Brazil have developed an improved method combining infrared and Raman spectroscopic techniques to better identify and characterize microplastics. This integrated approach enhances accuracy in distinguishing various polymer types and provides refined spectral analysis crucial for environmental studies.
New Technique Combines Raman Spectroscopy and AI to Accurately Detect Microplastics in Water
August 19th 2025Researchers have developed a novel approach to quantify microplastics in water environments by combining Raman spectroscopy with convolutional neural networks (CNN). This integrated method enhances the accuracy and speed of microplastic identification, offering a promising tool for environmental monitoring.
Lucidity and Light: The Spectroscopic Legacy of E. Bright Wilson, Jr.
August 18th 2025This Icons of Spectroscopy Series article features E. Bright Wilson, a pioneer of chemical physics. Wilson’s contributions to infrared, Raman, and microwave spectroscopy provided the theoretical and practical foundation for analyzing molecular structure and dynamics. As a revered professor at Harvard and coauthor of landmark texts, he mentored nearly 150 students and researchers, leaving a lasting legacy of scientific excellence and integrity.