Authors


Xiang Zhang

Latest:

High-Throughput Profiling of Long Chain Fatty Acids and Oxylipins by LC–MS

Long chain fatty acids (LCFAs) function as a source of metabolic energy, substrates for membrane biogenesis, and storage of metabolic energy. Oxylipins, oxygenated derivatives of LCFAs, regulate the activity of many cellular processes. Existing methods for the analysis of LCFAs and oxylipins have limited compound coverage and sensitivity that, therefore, prevent their application in biological studies. In this work, we developed a high-throughput LC–MS method for analysis of 51 LCFAs and oxylipins. LCFAs and oxylipins were first extracted from biological samples via solid-phase extraction. The extracted molecules were analyzed by targeted comparative metabolomics. Saturated and monounsaturated LCFAs were analyzed in single ion reaction mode, while polyunsaturated LCFAs and oxylipins were analyzed in multiple reaction monitoring mode. Using this method, we successfully quantified 31 LCFAs and oxylipins from mouse livers.


Rania M. Hathout

Latest:

Resolving Analytical Challenges in Pharmaceutical Process Monitoring Using Multivariate Analysis Methods: Applications in Process Understanding, Control, and Improvement

In this review, we show a wide range of examples of the expanding use of multivariate analysis (MVA) in pharmaceutical manufacturing and control. MVA is being used to resolve numerous analytical challenges, such as overcoming matrix effects, extracting reliable data from dynamic matrices, and more.


Spectro Analytical

Latest:

Analysis of Fuels and Additives Using ICP-OES and ED-XRF

**Wednesday, November 17th, 2021 at 11am EST| 10am CST | 8am PST** Laboratories today are under more pressure than ever before to process more samples per day, attain lower detection limits and lower operating costs. This webinar will highlight new advances in ICP-OES and ED-XRF technology that will address these points and explain how the latest designs have revolutionized the techniques and offered a dramatic increase in performance for all types of fuels and additives.


Autumn Phillips

Latest:

ICP-OES as a Viable Alternative to ICP-MS for Trace Analysis: Meeting the Detection Limits Challenge

A new sample introduction method improves ICP-OES for ultratrace element analysis. An explanation of how this ICP-OES compares to ICP-MS analysis is also provided.


Jiyong Shi

Latest:

Nondestructive Spectroscopic Techniques for Detection of Fungal and Mycotoxin Infections in Food Products: A Review

Fungal infections and mycotoxin contamination in food products pose a major threat to the world population. Mycotoxins contaminate approximately 25% of the world’s food products and cause severe health problems through the utilization of affected food products. The major mycotoxins in different foods are aflatoxins, ochratoxins, fumonisins, zearalenone, trichothecenes, and deoxynivalenol. Today, various conventional and nondestructive techniques are available for the detection of mycotoxins across multiple food products. Conventional methods are time-consuming, require chemical reagents, and include many laborious steps. Therefore, nondestructive techniques like near-infrared (NIR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, hyperspectral imaging, and the electronic nose are a priority for online detection of fungal and mycotoxin problems in different food products. In this article, we discuss recent improvements and utilization of different nondestructive techniques for the early detection of fungal and mycotoxin infections in various food products.



Di Guo

Latest:

Review and Prospect: Applications of Exponential Signals with Machine Learning in Nuclear Magnetic Resonance

A review of exponential signal models with machine learning in nuclear magnetic resonance (NMR) spectroscopy is discussed here.


Anna Schoeberl

Latest:

Single-Cell Analysis by ICP-MS—Current Status and Future Trends

Single-cell analysis is important in biology and medicine, because it takes into account cell heterogeneity and cellular dynamics, which are governed by cellular crosstalk and the vicinity of cells. Thus, it is of utmost importance to obtain not only information about the heterogeneity of a cell population, but also about their spatial arrangement.


HÜBNER Photonics

Latest:

Compact Sub-50 fs Lasers for Time-Domain Kerr-Effect Spectroscopy

Until recently, time-domain spectroscopies based on the optical Kerr effect (OKE) have been limited to the lab due to the unavailability of compact femtosecond lasers.


Exum

Latest:

New Mass Spec Technique Provides Rapid Elemental Analysis of Battery Materials

Webinar Date/Time: Tue, Sep 12, 2023 2:00 PM EDT


Xianzhong Wang

Latest:

Measurement of Ammonia Leakage by TDLAS in Mid-Infrared Combined with an EMD-SG Filter Method

In this article, tunable diode laser absorption spectroscopy (TDLAS) is used to measure ammonia leakage, where a new denoising method combining empirical mode decomposition with the Savitzky-Golay smoothing algorithm (EMD-SG) is proposed to improve the signal-to-noise ratio (SNR) of absorbance signals.


Wang Jing

Latest:

Preparation and Spectral Properties of MgAl2O4: Tb3+ Phosphor

A look at how the spectral properties single-phase green emission phosphor make it suitable for near-UV light-emitting diode (NUV-LED) applications.


Shenguang Sun

Latest:

Spectroscopic Analysis of the Effects of Alkaline Extractants on Humic Acids Isolated from Herbaceous Peat

To study the effect of various extractants on the structure of peat humic acid, peat humic acid was extracted using NH3·H2O, Na2CO3, NaHCO3, and Na2SO3 via alkali-extraction and acid-precipitation methods.


Minqin Jiang

Latest:

Enhanced Raman and Mid-Infrared Spectroscopic Discrimination of Geographical Origin of Rice by Data Mining and Data Fusion

The application of data mining combined with data fusion of Raman and mid- infrared spectra was studied to improve discrimination ability for modeling the geographical origins of rice.


Chiara Cordero

Latest:

GC×GC–TOF-MS and Comprehensive Fingerprinting of Volatiles in Food: Capturing the Signature of Quality

Food quality differences are dependent on botanical and geographical origins of primary food ingredients as well as storage and handling. Quality assessment for food materials, including cocoa and olive oil, is demonstrated by applying two-dimensional gas chromatography (GC×GC) combined with time-of-flight mass spectrometry (TOF-MS) and pattern recognition.


Ben Russell

Latest:

Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) Analysis of Nanomaterials for Use in Nuclear and Material Applications

Tunable diode laser absorption spectroscopy (TDLAS) is combined with an extreme learning machine (ELM) model, tailored by genetic algorithm (GA) parameter searching, to produce a more robust analytical method for trace gas analysis of ethylene.


B&W Tek, LLC

Latest:

See-Through Measurements of Illicit Substances in Commercial Containers with the TacticID®-1064 ST

The TacticID-1064 ST has dedicated software and hardware designed to measure materials through both transparent and opaque containers. These through-barrier measurements remove the need for active sampling of potentially dangerous compounds such as fentanyl, leading to safer operations and reduced wait time for clear results. The 1064 nm laser is also an advantage for analyzing fluorescent or impure material. A Raman system with a 785 or 830 nm laser may generate fluorescence from these samples, which can overwhelm the Raman signal and make identification impossible. In this application note, we explore some of the capabilities of the TacticID-1064 ST.


Wentao Xiao

Latest:

Identification of Different Dairy Products Using Raman Spectroscopy Combined with Fused Lasso Distributionally Robust Logistic Regression

To improve the robustness and accuracy of logistic regression identification method, a new Raman spectroscopy identification method was proposed that combines a distributionally robust optimization technique and fused lasso technique with logistic regression. Then, Raman spectroscopy was used to analyze two types of dairy products that were collected for anti-jamming identification testing to verify the effectiveness of the new method.


Kaiyu Zhang

Latest:

Colorimetric Discrimination of Pd2+ and Hg2+ Ions in Solvent and Solid-Film State Using Organic Acid-Assisted Green Synthesized Silver Nanoparticles

By using green synthesized AgNPs modified by chitosan and organic acid, a simple, cost-effective, and highly selective onsite colorimetric detection method for Pd2+ and Hg2+ ions was developed.


Zhe Liu

Latest:

A Raman Spectral Area Scanning Method to Identify the Sequences of Crossed Writings and Seal Stamps

Determining the printing sequences of crossed writings and seal stamps is often difficult because the most common methods used are expensive, time-consuming, and cumbersome. A new method using Raman spectral area scanning offers a better alternative while conducting pigment analysis and determining intersection sequences of writings and seal stamps. We explain why.



Wang Zhao-qun

Latest:

Kinetic Fluorimetric Determination of Formaldehyde by Oxidation of Rhodamine B with Potassium Bromate

A kinetic fluorimetric method was established for the determination of formaldehyde in synthetic water samples and laundry water by potassium bromate oxidation of rhodamine B.


Peng Li

Latest:

Hyperspectral Imaging Combined with Convolutional Neural Network for Rapid and Accurate Evaluation of Tilapia Fillet Freshness

The purpose of this work is to achieve rapid and nondestructive determination of tilapia fillets storage time associated with its freshness. Here, we investigated the potential of hyperspectral imaging (HSI) combined with a convolutional neural network (CNN) in the visible and near-infrared region (vis-NIR or VNIR, 397−1003 nm) and the shortwave near-infrared region (SWNIR or SWIR, 935−1720 nm) for determining tilapia fillets freshness.


Charlie Beales

Latest:

Imaging of Trace Elements Using Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry: Emerging New Applications

Metallomics seeks to understand the metallobiochemistry of cells and organisms in health and disease. This article explains the principle of laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for imaging applications and highlights its potential to provide additional insights in bioanalysis and metallomics.


Jenny Nelson

Latest:

Analysis of Elements in Snack Foods: A Closer Look at Pepperoni, Rice Noodles, Frozen Dinners, and Pizza

Software tools for ICP-MS and ICP-OES can help analysts to simplify method setup and reduce the potential for errors.


Pui Liew Phing

Latest:

Physicochemical Analysis and Detection of Rice Syrup Adulteration in Kelulut Honey Using Portable Near-Infrared Spectroscopy

This study aimed to assess and detect adulteration of Kelulut honey with different percentages of rice syrup using near-infrared (NIR) spectroscopy.


Wenlong Zhou

Latest:

Terahertz Spectral Investigation of L-Cysteine Hydrochloride and its Monohydrate

This new terahertz method provides a theoretical reference for studying the relationship between biomolecules and water.


Sebastian Recknagel

Latest:

Comparison of Peristaltic Pumps Used for Sample Introduction in Inductively Coupled Plasma–Atomic Emission Spectroscopy (ICP-AES)

Inductively coupled plasma–atomic emission spectroscopy (ICP-AES) relies on the use of a peristaltic pump for sample introduction. Here, two conventional peristaltic pumps are compared with a new pump based on the “easy click” principle for the analytical figures of merit.


Mario Corte-Rodríguez

Latest:

When Size Matters: ICP-MS Detection of Small Objects

Nanomaterials have a tremendous impact on our daily life, but usually in a beneficial way because of their useful properties. 


Michael S. Bradley

Latest:

FT-IR Microscopy: Sampling by Transmission

In this tutorial, we examine the techniques for preparing samples for transmission analysis using single windows, compression cells, and, finally, epoxy “pucks” and microtomes.