Analysis of heavy metals in pet food using ICP–OES was conducted to determine if there were potentially toxic elements present. Many of the samples showed significant concentrations of various toxic metals.
In this study, the feasibility of the rapid discrimination of three different geographical origins of purple sweet potato with a hyperspectral imaging (HSI) system was examined.
A new FID-FM fusion model for infrared measurements of glucose in synthetic samples is proposed, comparing prediction performance to full PLS, SMR, XGBoost, CBR, and DSFPLS modeling methods.
Tunable diode laser absorption spectroscopy (TDLAS) is combined with an extreme learning machine (ELM) model, tailored by genetic algorithm (GA) parameter searching, to produce a more robust analytical method for trace gas analysis of ethylene.
Alexander Beaton, a Senior Scientist at LightMachinery, joins us to talk about HyperFine virtually imaged phase array based picometer resolution spectrometers. Applications including laser characterization, plasma studies, and Brillouin measurements for biological applications will be discussed.
For more than 20 years, Heidi Goenaga-Infante, a science fellow and the leader of the inorganic analysis team at LGC, has been working on elemental and speciation analysis. Two recent areas of investigation include the analysis of trace metals in biological samples, and the study of nanomaterials. In these studies, Goenaga-Infante puts particular emphasis on metrology-advancing this work by developing validated reference methodologies. Goenaga-Infante is the 2020 recipient of the Lester W. Strock Award from Society of Applied Spectroscopy (SAS) and the SAS New England Regional Section, in recognition of her contributions to the field of analytical atomic spectrometry, and she recently spoke to us about her work. This interview is part of an ongoing series of interviews with the winners of awards that are presented at the SciX conference.
A new sample introduction method improves ICP-OES for ultratrace element analysis. An explanation of how this ICP-OES compares to ICP-MS analysis is also provided.
Lamellar structures, which are common in many polymeric materials and biological tissues, can diffract X-rays and give rise to reflections at small scattering angles. Analysis of these scattering features can be used investigate the deformation of lamellar structures at the microstructural length.
The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.
Understanding gallstone formation requires examining their elemental composition. Here, EDS and LIBS were used with PLS-DA to quantify elements found in human gallstones.
To study the optical properties of mixed crude oil, the optical constants of samples consisting of two crude oils mixed in different proportions were obtained by the double-thickness transmittance method based on transmittance spectra.
This study uses hyperspectral imaging (HSI) technology, in synergy with machine learning and deep learning algorithms, to innovate a non-destructive method for the assessment of chicken freshness.
Traditional qualitative analysis of agricultural materials using near-infrared spectroscopy can be improved using information-based classification methods, such as projection based on principal components and the Fisher criterion (PPF).
The study developed an effective mid-infrared spectroscopic identification model, combining principal component analysis (PCA) and support vector machine (SVM), to accurately determine the geographical origin of five types of millet with a recognition accuracy of up to 99.2% for the training set and 98.3% for the prediction set.
In this article, tunable diode laser absorption spectroscopy (TDLAS) is used to measure ammonia leakage, where a new denoising method combining empirical mode decomposition with the Savitzky-Golay smoothing algorithm (EMD-SG) is proposed to improve the signal-to-noise ratio (SNR) of absorbance signals.
Using confocal Raman imaging and other advanced measurement techniques, we study the localized strain characteristics of tungsten diselenide (WSe2), an important nanomaterial used for optoelectronic device applications.
Spectral reflectance is a non-destructive method that is applicable to remote sensing and may be used to measure the chlorophyll content in a crop, which indicates the photosynthetic capacity, growth cycles, and degrees of stress (such as disease, insect infestation, and heavy metal stress) on plant ecosystems. This vis-NIR spectral reflectance method measures leaf chlorophyll using a wavelet analysis algorithm approach.
We show how FT-IR may be used for quality control analysis of natrii sulfas, a transparent crystalline material used in natural medicine that primarily contains sodium sulfate decahydrate, crystallized from sulfate minerals.
The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.
The relationship between the complexation amount of thorium (Th) and Suwannee River fulvic acid (SRFA) and the changes in Th concentration and pH were studied using differential spectroscopy and 3D excitation-emission matrix fluorescence spectroscopy (3D EEM).
Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.
The article describes a method for geochemical sample analysis using polytetrafluoroethylene (PTFE) crucibles and ICP-MS, achieving detection limits below 0.2 μg/g and relative standard deviations ranging from 1.1% to 16.4%. The approach minimizes acid usage, prevents dust contamination, accurately determines volatile elements, and is deemed suitable for high-throughput laboratories with numerous samples and diverse elements to be tested.
As this study demonstrates, energy-dispersive X-ray fluorescence (EDXRF) and multivariate statistical analysis can be used to distinguish different classes of historical artifacts, such as ancient pottery—revealing insights about theirs origin and uses.
This application note demonstrates the performance of RAMOS 120 series confocal Raman microscopes for non-destructive identity and analysis of gemstones.
DNA effectively removes chrysene from contaminated water through intercalation, as confirmed by various analytical methods, offering a potential novel approach for chrysene elimination in water pollution.
In this article, it is explored whether THz-TDS combined with LS-SVM can be used to effectively identify the authenticity of Panax notoginseng, a traditional Chinese medicine.
Metallomics seeks to understand the metallobiochemistry of cells and organisms in health and disease. This article explains the principle of laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for imaging applications and highlights its potential to provide additional insights in bioanalysis and metallomics.
A new FID-FM fusion model for infrared measurements of glucose in synthetic samples is proposed, comparing prediction performance to full PLS, SMR, XGBoost, CBR, and DSFPLS modeling methods.
In this article, tunable diode laser absorption spectroscopy (TDLAS) is used to measure ammonia leakage, where a new denoising method combining empirical mode decomposition with the Savitzky-Golay smoothing algorithm (EMD-SG) is proposed to improve the signal-to-noise ratio (SNR) of absorbance signals.