Authors


Yuqing Huang

Latest:

Review and Prospect: Applications of Exponential Signals with Machine Learning in Nuclear Magnetic Resonance

A review of exponential signal models with machine learning in nuclear magnetic resonance (NMR) spectroscopy is discussed here.


Yiwen Ge

Latest:

A Raman Spectral Area Scanning Method to Identify the Sequences of Crossed Writings and Seal Stamps

Determining the printing sequences of crossed writings and seal stamps is often difficult because the most common methods used are expensive, time-consuming, and cumbersome. A new method using Raman spectral area scanning offers a better alternative while conducting pigment analysis and determining intersection sequences of writings and seal stamps. We explain why.


Thomas Bocklitz

Latest:

Key Steps in the Workflow to Analyze Raman Spectra

A more successful blueprint for analyzing Raman spectral data is outlined by following the 11 important steps, which are outlined here.



I. Girip

Latest:

Characterization of GeSbSe Thin Films Synthesized by the Conventional Melt-Quenching Method

Spectroscopic ellipsometry, correlated with UV-vis-NIR spectroscopy, is used to determine the optical constants of thin films, such as in GexSb40-xSe60 chalcogenide glass.


Min Sha

Latest:

Geographical Traceability of Millet by Mid-Infrared Spectroscopy and Feature Extraction

The study developed an effective mid-infrared spectroscopic identification model, combining principal component analysis (PCA) and support vector machine (SVM), to accurately determine the geographical origin of five types of millet with a recognition accuracy of up to 99.2% for the training set and 98.3% for the prediction set.


Samuel Britwum Wilson

Latest:

Investigating a Laser-Induced Titanium Plasma Under an Applied Static Electric Field

We investigate the effect of an applied electric field on the laser-induced titanium plasma for laser induced breakdown spectroscopy (LIBS) for the purpose of assessing electron density with respect to laser energy.


Brittany Handzo

Latest:

A Fingerprint in a Fingerprint: Raman Spectral Analysis of Pharmaceutical Ingredients

The significance of the smaller spectral region of the Raman spectrum, defined as the “fingerprint in the fingerprint” region, cannot be overstated when it comes to active pharmaceutical ingredient identity testing (API).


Benjamin A. Kuzma

Latest:

Coherent Raman Imaging for Assessing Cutaneous Pharmacokinetics: Advancements and Outlook

This article discusses coherent Raman imaging and how it can visualize and quantify cutaneous pharmacokinetics (PK).


Dawid Polanski

Latest:

Atline Analysis of Commercial Graphene Products with Raman Spectroscopy

Graphene exhibits special properties, such as high strength and high electrical and thermal conductivity and as such is highly desirable for key electronic components. A new Raman spectroscopy sampling technique has been applied to the characterization of batches of graphene that provides a simple, at-line method for obtaining key product data.



Paul N. Williams

Latest:

Energy Dispersive XRF in Soil Analysis for the Agrifood Sector

In the agrifood sector, soil sampling and analysis is a prerequisite for accurate fertilizer management and to monitor the accumulation of heavy metals in soils. In this study, energy dispersive X-ray fluorescence (EDXRF) was used to analyze soils with variable textures (clay and sandy) and the percent recovery of elements was compared, as a measure of accuracy.


Robert Wethman

Latest:

Applications of Raman Spectroscopy in Solvent Distillation and Exchange During Early-Phase Chemical Synthesis

The case studies presented here successfully demonstrate the use of inline Raman spectroscopic analysis to estimate solvent content during the solvent exchange and distillation operations in the synthesis of active pharmaceutical ingredients.


Yu Yan

Latest:

Stable Variable Selection Method and Comparison for Quantitative Analysis of Steels Using Laser-Induced Breakdown Spectroscopy

In this work, a stable variable selection method based on variable stability correction (VSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS) is proposed for the quantitative analysis of steel samples by laser-induced breakdown spectroscopy (LIBS).


Velusamy Veerappan

Latest:

FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study

This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.


Kelsey DeWitt

Latest:

The Use of X-Ray Powder Diffraction (XRD) and Vibrational Spectroscopic Techniques in the Analysis of Suspect Pharmaceutical Products

Here, we compare XRD and FT-IR for analysis of suspect counterfeit pharmaceuticals to determine how the techniques can be used in a complementary fashion.


Guy Ankonina

Latest:

A Comprehensive Study of WSe2 Crystals Using Correlated Raman, Photoluminescence (PL), Second Harmonic Generation (SHG), and Atomic Force Microscopy (AFM) Imaging

Using confocal Raman imaging and other advanced measurement techniques, we study the localized strain characteristics of tungsten diselenide (WSe2), an important nanomaterial used for optoelectronic device applications.



Zhenqi Zhu

Latest:

Terahertz Spectral Investigation of L-Cysteine Hydrochloride and its Monohydrate

This new terahertz method provides a theoretical reference for studying the relationship between biomolecules and water.


Gerald Luckeneder

Latest:

In situ Raman Spectroscopy Monitors the Corrosion of Mild Steel in a Salt Fog Chamber

In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.


Zonghua Zhang

Latest:

Specific Recognition Technology of Infrared Absorption Spectra Based on Continuous Wavelet Decomposition

IR absorption spectroscopy technology can solve the problem of line aliasing in gas detection. Here, continuous wavelet transform was used in time-frequency analysis to improve spectral component identification and quantitative detection of gases.


Chanwoo Lee

Latest:

Evolution and Future of Raman Spectroscopy: Tip-Enhanced Raman Spectroscopy

In celebration of Spectroscopy’s 35th Anniversary, leading spectroscopists discuss important issues and challenges in analytical spectroscopy.


Chengtao Su

Latest:

Detection of the Early Fungal Infection of Citrus by Fourier Transform Near-Infrared Spectra

We examine the feasibility of FT-NIR for the detection of early fungal infections in citrus.


Hanin Athirah Harun

Latest:

Quantitative Analysis of Sodium in Aqueous Samples Using Laser-Induced Breakdown Spectroscopy with a Thermoelectric Cooler as the Sample Preparation Method

With this cooling system, which maintains the chemical composition and temperature of the frozen sample, a higher S/N was achieved for LIBS analysis of a NaCl solution.


Daniel Arnaiz Uceda

Latest:

Studying Inorganic Arsenic, Heavy Metals, and Iodine in Dried Seaweed

Seaweed has become a popular ingredient in Western diets. Concerns for heavy metals and inorganic arsenic have been raised as potential risks to consumers. Methods for analysis are described, including microwave digestion, HPLC, and ICP-MS for quantitation and speciation.


Stefan Radel

Latest:

In Situ Enhancement of Microplastic Raman Signals in Water Using Ultrasonic Capture

Of the 78 million tons of plastic packaging manufactured every year, approximately one-third ends up in the ocean, the air, and most foods and beverages. To monitor the proliferation of these plastics, an ultrasonic capture method is demonstrated that produces a 1500-fold enhancement of Raman signals of microplastics in water.


Liqing He

Latest:

High-Throughput Profiling of Long Chain Fatty Acids and Oxylipins by LC–MS

Long chain fatty acids (LCFAs) function as a source of metabolic energy, substrates for membrane biogenesis, and storage of metabolic energy. Oxylipins, oxygenated derivatives of LCFAs, regulate the activity of many cellular processes. Existing methods for the analysis of LCFAs and oxylipins have limited compound coverage and sensitivity that, therefore, prevent their application in biological studies. In this work, we developed a high-throughput LC–MS method for analysis of 51 LCFAs and oxylipins. LCFAs and oxylipins were first extracted from biological samples via solid-phase extraction. The extracted molecules were analyzed by targeted comparative metabolomics. Saturated and monounsaturated LCFAs were analyzed in single ion reaction mode, while polyunsaturated LCFAs and oxylipins were analyzed in multiple reaction monitoring mode. Using this method, we successfully quantified 31 LCFAs and oxylipins from mouse livers.


Anne van Klinken

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Fang Ou

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Ning-ning Liu

Latest:

Study on Estimating Total Nitrogen Content in Sugar Beet Leaves Under Drip Irrigation Based on Vis-NIR Hyperspectral Data and Chlorophyll Content

The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.