This approach provides traceable and reliable quantitative elemental analysis of airborne particles for on-site environmental measurement with portable instrumentation.
Phosphogypsum can be used as an intermediary material to produce cement clinker. To monitor the quality of phosphogypsum cement, a novel molecular layer deposition X-ray fluorescence (XRF) analysis method using a glass frit was developed.
An artificial neural network was combined with LIBS to provide a rapid and accurate coal-rock recognition method for unmanned coal mining.
Gas chromatography–mass spectrometry (GC–MS) with cold electron ionization (EI) is based on interfacing the GC and MS instruments with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in SMB in a fly-through ion source (hence the name cold EI). GC–MS with cold EI improves all the central performance aspects of GC–MS. These aspects include enhanced molecular ions, improved sample identification, an extended range of compounds amenable for analysis, uniform response to all analytes, faster analysis, greater selectivity, and lower detection limits. In GC–MS with cold EI, the GC elution temperatures can be significantly lowered by reducing the column length and increasing the carrier gas flow rate. Furthermore, the injector temperature can be reduced using a high column flow rate, and sample degradation at the cold EI fly-through ion source is eliminated. Thus, a greater range of thermally labile and low volatility compounds can be analyzed. The extension of the range of compounds and applications amenable for analysis is the most important benefit of cold EI that bridges the gap with LC–MS. Several examples of GC–MS with cold EI applications are discussed including cannabinoids analysis, synthetic organic compounds analysis, and lipids in blood analysis for medical diagnostics.
Detecting illicit drugs in blood samples requires a rapid, non-invasive technique. The combination of surface-enhanced Raman spectroscopy (SERS) and chemometric techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), can aid in this endeavor.
In this study, the feasibility of the rapid discrimination of three different geographical origins of purple sweet potato with a hyperspectral imaging (HSI) system was examined.
A new FID-FM fusion model for infrared measurements of glucose in synthetic samples is proposed, comparing prediction performance to full PLS, SMR, XGBoost, CBR, and DSFPLS modeling methods.
Raman measurements of chromite minerals demonstrated that chromium content could be accurately determined, supporting a possible application of portable Raman devices on Earth or in space for mineral analysis of asteroids and planets.
EPA Method 200.8 and the Lead and Copper Rule Revisions don’t allow use of modern ICP-MS technology with a collision cell. Instead, correction equations can be used to compensate for polyatomic interferences.
Raman spectroscopy is a valuable tool for research and quality control of lithium-ion (Li-ion) batteries, which are a critical aspect of renewable energy technologies. We highlight two cases of bulk analysis of lithium compounds using Raman spectroscopy.
Portable NIR spectroscopy, combined with discrimination analysis (PLS-DA), can be used to rapidly and accurately identify five very similar wood species of the Cinnamomum genus.
Help for handling sample-specific concerns in spectrofluorometry.
DNA effectively removes chrysene from contaminated water through intercalation, as confirmed by various analytical methods, offering a potential novel approach for chrysene elimination in water pollution.
The case studies presented here successfully demonstrate the use of inline Raman spectroscopic analysis to estimate solvent content during the solvent exchange and distillation operations in the synthesis of active pharmaceutical ingredients.
Accurate determination of the elemental composition of nickel-based alloys is essential, given their use in high-performance equipment. This XRF technique enables rapid and nondestructive detection, as an alternative to existing approaches.
The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.
In this article, it is explored whether THz-TDS combined with LS-SVM can be used to effectively identify the authenticity of Panax notoginseng, a traditional Chinese medicine.
In celebration of Spectroscopy’s 35th Anniversary, leading spectroscopists discuss important issues and challenges in analytical spectroscopy.
To study the optical properties of mixed crude oil, the optical constants of samples consisting of two crude oils mixed in different proportions were obtained by the double-thickness transmittance method based on transmittance spectra.
Various chemometric approaches, including four discriminant models (ELM, TLBO–ELM, KELM, and TLBO–KELM), were used to detect shrimp freshness based on near-infrared hyperspectral imaging.
Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.
Analysis of the compositional variation in living cells is essential for understanding biological processes. Single-cell elemental analysis by triple-quadrupole ICP-MS is emerging as a selective, highly sensitive, and potentially high-throughput technique for the study of constitutive elements, and uptake of metallodrugs (or metal-containing nanomaterials) in single cells.
In this study, we propose a low-altitude unmanned aerial vehicle (UAV) hyperspectral visible near-infrared (vis-NIR) remote sensing hardware platform, which combines efficiency and accuracy for high-precision remote sensing-based ecological surveys and statistical data collection on grassland desertification.
Raman and XRF spectroscopy were used to examine paint in artwork, revealing the potential of both techniques to verify the authenticity of famous works of art.
Laser ablation laser ionization time-of-flight mass spectrometry (LALI-TOF-MS) can quantify elemental constituents without the need for matrix-matching, making it attractive for metals testing, particularly for additive manufacturing.
Accurate determination of the elemental composition of nickel-based alloys is essential, given their use in high-performance equipment. This XRF technique enables rapid and nondestructive detection, as an alternative to existing approaches.