This approach provides traceable and reliable quantitative elemental analysis of airborne particles for on-site environmental measurement with portable instrumentation.
This study uses hyperspectral imaging (HSI) technology, in synergy with machine learning and deep learning algorithms, to innovate a non-destructive method for the assessment of chicken freshness.
Reliable quantitative FT-IR measurements require that the pathlength be known to within 1%. Pathlength estimations based on nominal spacer thickness are not reliable and require that the actual pathlength be measured for accurate data. We demonstrate how.
With this cooling system, which maintains the chemical composition and temperature of the frozen sample, a higher S/N was achieved for LIBS analysis of a NaCl solution.
In this poster presentation applications manager Ute Schmidt discusses the use of correlative Raman-SEM (RISE Microscopy) imaging for analyzing silicon-carbide (SiC) ceramics. The main focus of the work is investigating the distribution of sub-micron structured polytypes of SiC grains on and below the surface.
Regulations have been imposed to set legal limits of nitrate and nitrite in water worldwide. In this study, a highly accurate and optimized ultraviolet (UV) spectroscopy method is proposed to simultaneously monitor nitrate and nitrite for rapid determination and continuous monitoring in environmental water applications.
Detecting metal elements in liquid samples cannot be done efficiently by only using LIBS, but when the technique is combined with appropriate membrane materials, rapid analysis of solution samples can be realized.
The results in this study indicate that NIR spectroscopy is a potentially promising approach for the rapid identification of different harvest times of Cabernet Sauvignon grapes, and the proposed technique is helpful for the prediction of ripened and over-ripened Cabernet Sauvignon grapes during the harvest time.
Time-resolved fluorescence spectroscopy reveals much about the structure-induced energy transfer mechanisms of phycobilisomes, the light-harvesting antenna in cyanobacteria.
Plasma spray–deposited metal films are used in many industrial applications. This study shows how high resolution terahertz time-domain spectroscopy (THz-TDS) can be used to analyze and characterize such films.
Inline FT-NIR and offline terahertz Raman imaging analysis are used to characterize active pharmaceutical ingredient (API) crystallinity and to monitor different solid physical states of the API, to control process parameters of hot melt extrusion.
This year’s EAS offers sessions live November 16–19 and on-demand until December 31.
This article highlights the use of nuclear magnetic resonance (NMR) spectroscopy to characterize biomarkers of metabolic syndrome at different stages of progression.
Classification and identification of different wood species are demonstrated using a portable near-infrared spectrometer, combined with four spectral pretreatment methods and three pattern recognition methods. Additional chemometric tools were used for comprehensive evaluation of classification model accuracy and complexity.
We examine the feasibility of FT-NIR for the detection of early fungal infections in citrus.
In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.
A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).
In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.
The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.
IR absorption spectroscopy technology can solve the problem of line aliasing in gas detection. Here, continuous wavelet transform was used in time-frequency analysis to improve spectral component identification and quantitative detection of gases.
In this study, in situ Raman spectroscopy was used to detect the formation, growth, and evolution of corrosion inside a salt fog chamber. These results pave the way for monitoring the real-time observation of corrosion on metal surfaces.
In X-ray fluorescence (XRF) analysis, physical traceability chains are used to quantify the absolute elemental content in a sample. The physical traceability chain relies on absolute knowledge of the X-ray spectral distribution used for the excitation of the instrument and is currently used at synchrotron radiation facilities. Here, we discuss the transfer of the physical traceability chain to laboratory-based X-ray sources, which are often polychromatic, with the view to generate wider application of quantitative XRF analysis.
FT-IR offers an alternative method for the quantification and classification of lignocellulose in biofuel pellets, based on determination of cellulose, hemicellulose, and lignin content. The IR spectroscopic evaluation presented here provides an understanding of the pretreatment and storage of biofuel pellets.
The SCGD ambient-atmosphere microplasma has emerged as an alternate excitation source for atomic emission spectroscopy that is able to perform admirably compared to established, conventional approaches—with lower cost.
Per- and poly-fluoroalkyl substances (PFAS) are a family of potentially thousands of synthetic compounds that have long been used in the manufacture of a variety of common products with stain-repellent and nonstick properties. Their signature strong fluorine and carbon bonds make them difficult to break down and, as a result, they are among the most persistent of today’s environmental pollutants. Alarmingly, PFAS can be found in drinking water and have been shown to accumulate in the body with the potential to cause multiple health problems, such as hormone disruption and cancer. Advances in mass spectrometry have facilitated the detection of known PFAS contaminants as well as the identification of poorly studied and novel compounds in watersheds. This article explores the detection of known and novel PFAS contaminants in aqueous film-forming foams and raw drinking water sources in North Carolina, using new advances in mass spectrometry and data acquisition to improve identification and quantitation.
Here we conduct an evaluation of significant operational parameters of IR microscopy for accurately determining the size of microplastics, with the overarching goal of outlining performance parameters that will help in the standardization of microplastics analysis.
A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).
The relationship between the complexation amount of thorium (Th) and Suwannee River fulvic acid (SRFA) and the changes in Th concentration and pH were studied using differential spectroscopy and 3D excitation-emission matrix fluorescence spectroscopy (3D EEM).