The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.
IR absorption spectroscopy technology can solve the problem of line aliasing in gas detection. Here, continuous wavelet transform was used in time-frequency analysis to improve spectral component identification and quantitative detection of gases.
This study shows that surface-enhanced Raman spectroscopy (SERS) of serum can provide an experimental basis for diagnosing leukemia in patients.
This study uses hyperspectral imaging (HSI) technology, in synergy with machine learning and deep learning algorithms, to innovate a non-destructive method for the assessment of chicken freshness.
A recent study used aluminum foil-assisted ATR-FT-IR spectroscopy to detect acute kidney injury (AKI) in a rat model using plasma samples. The results show how ATR-FT-IR could be used to study more types of clinical samples in the future.
Tunable diode laser absorption spectroscopy (TDLAS) is combined with an extreme learning machine (ELM) model, tailored by genetic algorithm (GA) parameter searching, to produce a more robust analytical method for trace gas analysis of ethylene.
A new FID-FM fusion model for infrared measurements of glucose in synthetic samples is proposed, comparing prediction performance to full PLS, SMR, XGBoost, CBR, and DSFPLS modeling methods.
The SCGD ambient-atmosphere microplasma has emerged as an alternate excitation source for atomic emission spectroscopy that is able to perform admirably compared to established, conventional approaches—with lower cost.
Food contamination from mineral oil saturated hydrocarbons (MOSHs) and mineral oil aromatic hydrocarbons (MOAHs) is problematic and requires a sensitive analytical technique. These contaminants were analyzed using GC×GC with flame ionization detection (FID) and time-of-flight–MS (TOF–MS) parallel dual detection. The method provides enhanced chromatographic separation, along with the full mass spectra information, and overcomes difficult interferences, resulting in reduction of false positives over conventional GC–MS methods.
This article explores the current landscape of global critical raw materials (CRM) trends in research and the applications of atomic spectroscopy (AS), including inductively coupled plasma–mass spectrometry (ICP-MS), inductively coupled plasma–optical emission spectrometry (ICP-OES), and X-ray analytical techniques in their identification of diverse industrial and environmental media.
To study the effect of various extractants on the structure of peat humic acid, peat humic acid was extracted using NH3·H2O, Na2CO3, NaHCO3, and Na2SO3 via alkali-extraction and acid-precipitation methods.
Surface-enhanced Raman spectroscopy (SERS), using gold nanoparticles, is useful for detection of low-levels of many analytes, including the water pollutant malachite green (MG).
This study describes how interference-free, low-level analysis of toxic elements as well as major elements in particulate matter (PM), with an aerodynamic diameter of 2.5 μm or smaller, can be accomplished. Comparison study examples are given for two locations.
Seven common mistakes in the analysis of Raman spectra can lead to overestimating the performance of a model.
The article describes a method for geochemical sample analysis using polytetrafluoroethylene (PTFE) crucibles and ICP-MS, achieving detection limits below 0.2 μg/g and relative standard deviations ranging from 1.1% to 16.4%. The approach minimizes acid usage, prevents dust contamination, accurately determines volatile elements, and is deemed suitable for high-throughput laboratories with numerous samples and diverse elements to be tested.
The “selective fluorescence quenching effects” of Fe3+ ions on carbon dots are examined to gain a more comprehensive understanding of the interactions of metal ions with a variety of fluorescent materials.
Here, a series of developing methods is presented for locating and analyzing deeply buried late Pleistocene archaeological sites, which includes the initial investigation of the geomorphology of a potential archaeological site with a suite of analytical geochemical techniques.
An inexpensive fiberoptic-based formaldehyde field sensor is described for monitoring low-levels of formaldehyde, a widespread indoor air pollutant, based on the principle of evanescent wave absorption of light. Sensor prototypes following that principle are being tested in two plywood board production plants.
To ensure the stable operation of fuel plant desulfurization systems, it is critical to maintain the content of thiosulfate within an appropriate range. This new method for thiosulfate determination is highly sensitive and easy to perform.
We show how FT-IR may be used for quality control analysis of natrii sulfas, a transparent crystalline material used in natural medicine that primarily contains sodium sulfate decahydrate, crystallized from sulfate minerals.
Lithium-based batteries are key for moving away from the combustion of fossil fuels at the point of use. ICP-OES and ICP-MS methods can measure trace-element impurities that may affect battery performance.
In this paper, a one-time digestion method for the determination of arsenic (As), antimony (Sb), selenium (Se), and mercury (Hg) in geological samples was established.
The use of high-resolution LIBS imaging requires the reduction of acquisition time. The authors describe a new developed system that accomplishes this goal and can be used in various applications where elemental composition and elemental distribution analysis is required.
How to create trouble-free sample preparation workflow for elemental analysis.
An increasing number of antibiotic residue problems in food have emerged around the world. We examine how SERS is used to identify antibiotic residues in chicken, focusing on doxycycline hydrochloride and tylosin.