A group of scientists from China investigated the potassium isotopic composition of different plant reference materials using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Their work was published in Spectrochimica Acta Part B: Atomic Spectroscopy (1).
In this study, the potassium isotopic composition (δ41K) of five certified plant reference materials (BCR 679, GSV-2, GSB-2a, GSB-3 and GSB-6a) with varying potassium concentrations was assessed using MC-ICP-MS. This system employed a reduced radio frequency (RF) forward power and low-resolution mode without a collision cell. The δ41K values of the plant reference materials (BCR 679, GSV-2, GSB-2a, GSB-3 and GSB-6a) were recorded as −2.44 ± 0.03‰, −0.37 ± 0.04‰, −0.37 ± 0.05‰, −1.27 ± 0.04‰ and − 0.62 ± 0.01‰, respectively. According to the study, the δ41K values of plants being presented in this study allowed a methodology for pre-treatment and determination of δ41K in plants to be established. δ41K is now believed to have potential as a notable tracer in ecosystems’ “soil-plant systems”, though further research is needed in this regard (1).
Potassium (K) is crucial for living cells to function. It specifically holds significant importance as a nutrient for plants, comprising up to 10% of plant biomass on a dry weight basis. However, despite being abundant in soil, there is a lack of K availability for plants, which places great importance on understanding the K cycle in soil-plant systems. One recent avenue of analysis is developing high-precision stable K isotopic composition analysis, which allows for the study of both K concentration and isotopic fractionation (1).
Three potassium isotopes exist in nature, 39K, 40K, 41K, with 39K and 40K being the most stable K isotopes. Using MC-ICP-MS, scientists have been able to improve isotope ratio measurements. This enables precision K isotopic analysis to be routinely achieved with precision better than 0.06%. High-precision K isotopic analysis can be achieved using two different approaches. The first involves using high-resolution mode to segregate Ar hydrides and K after the suppression of Ar through the reduction of radio frequency (RF) forward power using cold plasma. The second approach uses the “collision gas” strategy to eliminate Ar-based ionic species.
(1) He, M-Y.; Ren, T. X.; Jin, Z. D.; Deng, L.; Liu, H. J.; Cheng, Y. Y.; Li, Z. Y.; Liu, X. X.; Yang, Y.; Chang, H. Precise Analysis of Potassium Isotopic Composition in Plant Materials By Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2023, 209, 106781. DOI: https://doi.org/10.1016/j.sab.2023.106781
Quantifying Microplastics and Anthropogenic Particles in Marine and Aquatic Environments
January 30th 2025Spectroscopy recently sat down with Elise Granek, Susanne Brander, and Summer Traylor to discuss their recent study quantifying microplastics (MPs) and anthropogenic particles (APs) in the edible tissues of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp.
Recent Study Analyzes Microplastics in Seafood on the U.S. West Coast
January 22nd 2025A recent study examines widespread microplastic contamination in key Oregon seafood species, emphasizing the need for coordinated local and global efforts to reduce plastic pollution and protect ecosystems, public health, and cultural traditions.
Reviewing the Impact of 2D-COS on Analyzing Microplastic Impact on the Environment
January 20th 2025A recent review article highlighted how two-dimensional correlation spectroscopy (2D-COS) is advancing microplastics research and uncovering their aging processes and interactions with environmental substances.