A group of scientists from China investigated the potassium isotopic composition of different plant reference materials using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Their work was published in Spectrochimica Acta Part B: Atomic Spectroscopy (1).
In this study, the potassium isotopic composition (δ41K) of five certified plant reference materials (BCR 679, GSV-2, GSB-2a, GSB-3 and GSB-6a) with varying potassium concentrations was assessed using MC-ICP-MS. This system employed a reduced radio frequency (RF) forward power and low-resolution mode without a collision cell. The δ41K values of the plant reference materials (BCR 679, GSV-2, GSB-2a, GSB-3 and GSB-6a) were recorded as −2.44 ± 0.03‰, −0.37 ± 0.04‰, −0.37 ± 0.05‰, −1.27 ± 0.04‰ and − 0.62 ± 0.01‰, respectively. According to the study, the δ41K values of plants being presented in this study allowed a methodology for pre-treatment and determination of δ41K in plants to be established. δ41K is now believed to have potential as a notable tracer in ecosystems’ “soil-plant systems”, though further research is needed in this regard (1).
Potassium (K) is crucial for living cells to function. It specifically holds significant importance as a nutrient for plants, comprising up to 10% of plant biomass on a dry weight basis. However, despite being abundant in soil, there is a lack of K availability for plants, which places great importance on understanding the K cycle in soil-plant systems. One recent avenue of analysis is developing high-precision stable K isotopic composition analysis, which allows for the study of both K concentration and isotopic fractionation (1).
Three potassium isotopes exist in nature, 39K, 40K, 41K, with 39K and 40K being the most stable K isotopes. Using MC-ICP-MS, scientists have been able to improve isotope ratio measurements. This enables precision K isotopic analysis to be routinely achieved with precision better than 0.06%. High-precision K isotopic analysis can be achieved using two different approaches. The first involves using high-resolution mode to segregate Ar hydrides and K after the suppression of Ar through the reduction of radio frequency (RF) forward power using cold plasma. The second approach uses the “collision gas” strategy to eliminate Ar-based ionic species.
(1) He, M-Y.; Ren, T. X.; Jin, Z. D.; Deng, L.; Liu, H. J.; Cheng, Y. Y.; Li, Z. Y.; Liu, X. X.; Yang, Y.; Chang, H. Precise Analysis of Potassium Isotopic Composition in Plant Materials By Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2023, 209, 106781. DOI: https://doi.org/10.1016/j.sab.2023.106781
Trending on Spectroscopy: The Top Content of 2024
December 30th 2024In 2024, we launched multiple content series, covered major conferences, presented two awards, and continued our monthly Analytically Speaking episodes. Below, you'll find a selection of the most popular content from Spectroscopy over the past year.
FT-IR Spectroscopy for Microplastic Classification
December 19th 2024A new study in Infrared Physics & Technology highlights the pivotal role of Fourier transform infrared (FTIR) spectroscopy in identifying and quantifying microplastics, emphasizing its advantages, limitations, and potential for advancement in mitigating environmental pollution.
Measuring Microplastics in Remote and Pristine Environments
December 12th 2024Aleksandra "Sasha" Karapetrova and Win Cowger discuss their research using µ-FTIR spectroscopy and Open Specy software to investigate microplastic deposits in remote snow areas, shedding light on the long-range transport of microplastics.
Microplastics in the Desert: A Growing Concern in Phoenix Soils
December 6th 2024A recent study reveals widespread and increasing microplastic contamination in the soils of Phoenix and the Sonoran Desert, highlighting significant environmental concerns and the need for further research into their sources and impacts.
The Fundamental Role of Advanced Hyphenated Techniques in Lithium-Ion Battery Research
December 4th 2024Spectroscopy spoke with Uwe Karst, a full professor at the University of Münster in the Institute of Inorganic and Analytical Chemistry, to discuss his research on hyphenated analytical techniques in battery research.