Webinar Date/Time: On-Demand
In this webinar, we will examine best practices for sample preparation and performing accurate on-filter microplastic analysis using the Agilent 8700 LDIR Chemical Imaging System.
Register Free: https://www.spectroscopyonline.com/spec/ldir
Event Overview:
Everyday plastic items can degrade into small fragments and particles through use, wear, weathering, or improper disposal of waste. These small-sized plastic particles are ubiquitous substances in the environment and are considered as emerging contaminants by the World Health Organization. More research is needed into the impacts of microparticles on human health, especially as microplastics have been found in drinking water, wastewater, and foods.
To understand the behavior of microplastics in the environment and in food chains, accurate methods are needed that can identify, characterize, and quantify different polymers. Efforts are being made to standardize microplastic analysis methods around the globe by performing interlaboratory studies (ILS). So far, however, the results of ILS have shown significant variation, due in part to differences in methodology from sample preparation through to analysis, including inconsistent use of quality assurance procedures.
To achieve accurate and reproducible analysis of microplastics, certain practical aspects should be considered. In this webinar, we will highlight microplastic sample preparation in various matrices and examine best practice for performing accurate on-filter microplastic analysis using the Agilent 8700 LDIR Chemical Imaging System.
Key Learning Objectives
Who Should Attend
Speakers
Subharthe Samandra
PhD Candidate
University of Melbourne and Agilent Technologies
Subharthe Samandra completed his Bachelor of Environmental Science (Major: Chemistry) at the Royal Melbourne Institute of Technology (RMIT) in 2018 and continued with his honors where he investigated the presence of Per-and Polyfluoroalkyl substances (PFASs) in the environment and consumer products. In 2020, he started his Master of Industrial Research and partnered with Eurofins for two years to develop precise and reproducible analytical methods for identifying and quantifying microplastics in surface water, soil, sand, and biota (e.g., mollusks) using the Agilent Laser Direct Infra-Red Imaging System (LDIR). This work was recognized with the Innovation Award of 2022 by the Australian Land and Groundwater Association for being the first commercial microplastics laboratory in Australia. During his Masters, he published a manuscript titled “Microplastics contamination of an unconfined groundwater aquifer in Victoria, Australia” which was the first study in the world to find microplastics in groundwater that was not exposed to the atmosphere. For this work, he was a finalist for the Australian Water Association Student of the Year award. Additionally, he was awarded the 2022 SETAC Australia Thesis Prize in Environmental Chemistry. He has now started his PhD with the Australian Laboratory for Emerging Contaminants at the University of Melbourne in collaboration with Agilent Technologies to develop and optimize methods to extract microplastics from complex matrices to be quantified using the LDIR.
Dr. Wesam Alwan
Applications Scientist
Agilent Technologies
Wesam Alwan has a PhD in medicinal chemistry from Monash University (Australia) and a master’s degree from the University of KwaZulu-Natal (South Africa). His previous research experience focused on designing small molecules that inhibit bacterial virulence via fragment-based drug discovery techniques. In previous work experience, Wesam worked in science policy for the Organization for the Prohibition of Chemical Weapons (The Hague, The Netherlands) with a project focusing on sampling and analysis of chemical warfare agents and their medical countermeasures. He is currently the applications scientist supporting both applications development for current products as well as new products in development.
Register Free: https://www.spectroscopyonline.com/spec/ldir
Fluorescence Spectroscopy Emerges as Rapid Screening Tool for Groundwater Contamination in Denmark
May 21st 2025A study published in Chemosphere by researchers at the Technical University of Denmark demonstrates that fluorescence spectroscopy can serve as a rapid, on-site screening tool for detecting pharmaceutical contaminants in groundwater.
The Future of Neurodegenerative Disease Research and the Role of IR Imaging
May 21st 2025In the final part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign talk about the key performance metrics they used to evaluate their model, and what the future of neurodegenerative disease research looks like.
Describing Their Two-Step Neural Model: An Interview with Ayanjeet Ghosh and Rohit Bhargava
May 20th 2025In the second part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign discuss how machine learning (ML) is used in data analysis and go into more detail about the model they developed in their study.
AI and Infrared Light Team Up to Advance Soil Carbon Monitoring
May 19th 2025A team of international researchers has developed a faster, more accurate method to analyze soil carbon fractions using mid-infrared spectroscopy and deep learning. Their approach preserves the chemical balance of soil organic carbon components, paving the way for improved climate models and sustainable land management.