The Application of Computational Chemistry to Problems in Mass Spectrometry
May 1st 2017Quantum chemistry is capable of calculating a wide range of electronic and thermodynamic properties of interest to a chemist or physicist. Calculations can be used both to predict the results of future experiments and to aid in the interpretation of existing results. This paper will demonstrate some examples where quantum chemistry can aid in the development of mass spectrometric methods. Gas-phase electron affinities (EAs) have been difficult to determine experimentally, so the literature values are often not reliable. Computational methods using quantum chemistry have allowed the compilation of a self-consistent database for the EAs of polynuclear aromatic compounds. Likewise, proton affinities (PAs) and ionization potentials (IPs) have been calculated and compared favorably with experimental results for these molecules.
Advantage of Premixed Mobile Phases for Consistent Chromatography of Peptides Using Nano-LC–MS/MS
May 1st 2017High resolution mass spectrometry with nano-LC is used for protein identification and quantification in both top-down and bottom-up proteome analysis. Reliable instrumentation in combination with ultrapure mobile phases is essential for data integrity. Premixed 80% acetonitrile with 0.1% formic acid (LS122-500) and water with 0.1% formic acid (LS118-500) were designed to produce a consistent chromatographic performance using this instrument system. In this study, these mobile phases were used extensively to evaluate several factors which can affect separation of protein digests such as peak retention, peak repeatability, and sample carryover. Our results demonstrated excellent chromatographic performance using Thermo Scientific EASY-nLC 1200 LC system and Thermo Scientific LTQLX ™ ion trap mass spectrometer with the specialized premixed mobile phases.