Sample Preparation Method for Mercury Analysis in Reagent Chemicals by ICP-OES
November 1st 2015Efficient and accurate measurement of mercury concentration is a challenge. A direct sample preparation method for reliable ICP-OES mercury measurement would be invaluable to chemical manufacturers, testing laboratories, and other industries. Historically, ICP-OES Hg measurements have been plagued by poor Hg detection limits, severe carryover effects, and sample instability. In this study, we present a method of sample preparation for ICP-OES mercury analysis in various reagent chemical compounds. This sample preparation method is straightforward and direct, allowing mercury analysis in a variety of reagent chemicals without digestion.
Questioning the Relationship Between Analyte Ion Mass and ICP-MS Matrix Effects
November 1st 2015Matrix effects-changes in analyte sensitivity induced by a high concentration of matrix elements-can reduce accuracy in inductively coupled plasma–mass spectrometry (ICP-MS). It has long been accepted, since the 1987 publication of a study by Tan and Horlick (1), that matrix effects are more severe for light analyte ions in the presence of heavy matrix ions. However, new studies by Shi Jiao and John Olesik in the Trace Element Research Laboratory (TERL) at The Ohio State University (Columbus, Ohio), carried out using current ICP-MS instruments, show that matrix effects are not strongly dependent on analyte ion mass. These study results have implications for understanding the fundamental causes of matrix effects in ICP-MS, and for the choice of internal standards. Jiao and Olesik spoke to Spectroscopy about this work.