Roman Coins Treasure. Pile of Empire Roman Coins | Image Credit: © wojciechkic.com - stock.adobe.com.

Studying historical ancient artifacts requires the use of a nondestructive technique to analyze the metal surfaces of these objects. This study presents two approaches that improves on existing methods when conducting alloy analysis.
In a recent study published in Spectrochimica Acta Part B: Atomic Spectroscopy, lead author S. Porcinai from the Ministry of Culture in Firenze, Italy, sheds light on the challenges and advancements in analyzing historical metal artifacts (1). The investigation of alloy composition remains pivotal in understanding the history and craftsmanship behind these artifacts.
Roman Coins Treasure. Pile of Empire Roman Coins | Image Credit: © wojciechkic.com - stock.adobe.com.
Porcinai and the research team examined the efficacy of analyzing surface samples compared to shavings from certified reference materials. The goal was to enhance the accuracy and precision when collecting quantitative data. Previous research efforts in alloy analysis saw researchers use portable X-ray fluorescence (XRF) to conduct quantitative analysis (1). However, researchers were limited in the data they could collect when metal surfaces of alloys were concealed by patination layers or corrosion (1).
Porcinai and the team demonstrated in their study that when a suitable calibration model using certified reference materials in the same form (surface or shavings) was applied, quantitative data obtained from both surfaces and shavings exhibited comparable accuracy and precision (1). Repeatability tests on detected elements using the same certified reference materials demonstrated results within a 5% margin, affirming the reliability of the approach (1).
The study focused on two approaches. First, the abration of a small portion to eliminate corrosion products, and second, collecting samples in the form of shavings or micro-fragments (1).
The significance of quantitative elemental analysis in understanding ancient bronze artifacts cannot be overstated. It unravels insights into the technical prowess of craftsmen, manufacturing techniques, and even the sourcing and trade of raw materials (1). Although pXRF analysis is a widely used non-invasive technique for studying ancient copper alloys, the presence of surface irregularities has posed a challenge to precise quantification of bulk properties (1).
Historical metal artifacts are a key ingredient to learning about the past in a nuanced way. By refining non-invasive analysis techniques, researchers aimed to decode the intricate stories embedded in these invaluable relics while preserving their integrity for generations to come (1).
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Porcinai, S.; Cagnini, A.; Galeotti, M.; Ferretti, M. Quantitative Analysis of Copper Alloys by Means of Portable X-ray Fluorescence: A Comparison Between Analysis of Shavings and Surfaces. Spectrochimica Acta Part B: At. Spectrosc. 2023, 210, 106808. DOI: 10.1016/j.sab.2023.106808
The 2025 Emerging Leader in Atomic Spectroscopy Award
February 15th 2025Benjamin T. Manard has won the 2025 Emerging Leader in Atomic Spectroscopy Award for his pioneering research in nuclear material characterization and isotope ratio analysis, with expertise in advanced atomic spectrometry techniques such as inductively coupled plasma optical emission spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and laser ablation.
Applications of Micro X-Ray Fluorescence Spectroscopy in Food and Agricultural Products
January 25th 2025In recent years, advances in X-ray optics and detectors have enabled the commercialization of laboratory μXRF spectrometers with spot sizes of ~3 to 30 μm that are suitable for routine imaging of element localization, which was previously only available with scanning electron microscopy (SEM-EDS). This new technique opens a variety of new μXRF applications in the food and agricultural sciences, which have the potential to provide researchers with valuable data that can enhance food safety, improve product consistency, and refine our understanding of the mechanisms of elemental uptake and homeostasis in agricultural crops. This month’s column takes a more detailed look at some of those application areas.
Best of the Week: Seed Vigor, Flower Classification, Emerging Leader in Atomic Spectroscopy
January 10th 2025Top articles published this week include two peer-reviewed articles that explore optical detection technology for seed vigor and classifying flowers, as well as a profile on Benjamin Manard, who was recognized as the winner of the 2025 Emerging Leader in Atomic Spectroscopy.
The Advantages and Landscape of Hyperspectral Imaging Spectroscopy
December 9th 2024HSI is widely applied in fields such as remote sensing, environmental analysis, medicine, pharmaceuticals, forensics, material science, agriculture, and food science, driving advancements in research, development, and quality control.