Engineers from the Thayer School of Engineering at Dartmouth (Hanover, New Hampshire) and radiologists are developing new approaches for an emerging technique in diagnostic imaging for breast cancer-MRI with near ?infrared spectroscopy (IIRS) as reported in the February issue of the journal Academic Radiology.
Engineers from the Thayer School of Engineering at Dartmouth (Hanover, New Hampshire) and radiologists are developing new approaches for an emerging technique in diagnostic imaging for breast cancer-MRI with near –infrared spectroscopy (IIRS) as reported in the February issue of the journal Academic Radiology.
Combined MRI¬–NIRS may benefit women whose mammograms showed an abnormality and require further testing to rule out cancer. The test would be conducted before an invasive biopsy to look for tumors. For the new method to work successfully in routine patient care, MRI–NIRS must adapt to an individual’s body size as well as accommodate a range of cup sizes. The equipment must also mobilize and maintain contact with the breast.
MRI–NIRS testing may offer specific advantages to women with dense breasts, who are more likely to develop and die from breast cancer. A dense breast is harder for a radiologist to “see through” when using traditional imaging equipment, which reportedly lacks the sensitivity to penetrate the dense tissue. Standard breast screening is effective 77-97 percent of the time in a normal breast, but precision falls to 63-89 percent when a breast is dense.
AI Boosts SERS for Next Generation Biomedical Breakthroughs
July 2nd 2025Researchers from Shanghai Jiao Tong University are harnessing artificial intelligence to elevate surface-enhanced Raman spectroscopy (SERS) for highly sensitive, multiplexed biomedical analysis, enabling faster diagnostics, imaging, and personalized treatments.
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.