A team of researchers has developed a novel algorithm for rapid peak fitting and resolution enhancement in Raman hyperspectra analysis. The algorithm offers significant advancements in processing large datasets, improving peak resolution, and extracting valuable information about analytes.
A team of researchers from The University of British Columbia in Vancouver, Canada, and the National Hellenic Research Foundation in Athens, Greece, has developed a novel algorithm for rapid peak fitting and resolution enhancement in the analysis of Raman hyperspectra. The algorithm, described in a study published in the journal Applied Spectroscopy, offers significant improvements in processing large hyperspectral data sets and extracting valuable information about analytes (1).
Spectroscopic peak parameters play a crucial role in understanding the characteristics of analytes. Peak fitting, which involves identifying and resolving overlapped peaks, is a complex task due to computational challenges and the often unknown nature of the analyte. This poses obstacles when processing vast hyperspectral datasets, especially for applications like manufacturing process control.
The research team developed a new two-part algorithm to address these challenges. In the first part, they utilized a combination of techniques to estimate the total number of bands and their parameters based on a representative spectrum from the dataset. Leveraging vector operations and exploiting intrinsic features of the Gaussian distribution, the algorithm rapidly fitted all the spectra in an iterative manner, ultimately producing the best fits for each spectrum.
By reducing the bandwidths and simultaneously increasing the amplitudes of the obtained bands, the algorithm constructed high-resolution spectra that significantly enhanced correlation-based analyses. To validate its effectiveness, the algorithm was tested on synthetic spectra, successfully recovering the ground truth correlations between highly overlapped peaks. Furthermore, the researchers applied the algorithm to low-resolution spectra of glucose, comparing the results to those obtained from high-resolution spectra. The algorithm showcased its ability to enhance peak resolution and capture important aspects of the data's intrinsic correlation structure.
To demonstrate its practical utility, the team processed a larger spectral dataset obtained from mammalian cells, both fixed with methanol and air drying. The algorithm successfully enhanced resolution in complex spectra and showcased its impact on two-dimensional correlation spectroscopy and principal component analyses.
The development of this new algorithm is a significant step forward in the field of Raman spectroscopy. Its ability to rapidly perform peak fitting and resolution enhancement on large hyperspectral datasets opens doors for improved analysis in various domains, including manufacturing, biotechnology, and materials science. Researchers and analysts can now obtain high-resolution spectra more efficiently, enabling deeper insights into the nature of analytes and their correlation structures.
As technology continues to advance, algorithms like these are essential tools that accelerate scientific progress and drive innovation in a wide range of industries.
(1) Schulze, H. G.; Rangan, S.; Vardaki, M. Z.; Blades, M. W.; Turner, R. F. B.; Piret, J. M. Rapid Vector-Based Peak Fitting and Resolution Enhancement for Correlation Analyses of Raman Hyperspectra. Appl. Spectrosc. 2023, ASAP. DOI: 10.1177/00037028231176805
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.
Diffuse Reflectance Spectroscopy to Advance Tree-Level NSC Analysis
November 28th 2024Researchers have developed a novel method combining near-infrared (NIR) and mid-infrared (MIR) diffuse reflectance spectroscopy with advanced data fusion techniques to improve the accuracy of non-structural carbohydrate estimation in diverse tree tissues, advancing carbon cycle research.
Young Scientist Awardee Uses Spectrophotometry and AI for Pesticide Detection Tool
November 11th 2024Sirish Subash is the winner of the Young Scientist Award, presented by 3M and Discovery education. His work incorporates spectrophotometry, a nondestructive method that measures the light of various wavelengths that is reflected off fruits and vegetables.
Emerging Leader Highlights Innovations in Machine Learning, Chemometrics at SciX Awards Session
October 23rd 2024Five invited speakers joined Joseph Smith, the 2024 Emerging Leader in Molecular Spectroscopy, on stage to speak about trends in hyperspectral imaging, FT-IR, surface enhanced Raman spectroscopy (SERS), and more during the conference in Raleigh.