Bruker Corporation (Billerica, Massachusetts) has acquired Anasys Instruments Corporation, a privately held company that develops and manufactures nanoscale infrared (nano IR) spectroscopy and thermal measurement instruments such as atomic force microscopy and white-light interferometric 3D microscopy.
Bruker Corporation (Billerica, Massachusetts) has acquired Anasys Instruments Corporation, a privately held company that develops and manufactures nanoscale infrared (nano IR) spectroscopy and thermal measurement instruments such as atomic force microscopy and white-light interferometric 3D microscopy. The acquisition extends Bruker’s portfolio of Raman and Fourier-transform IR (FT-IR) spectrometers and its nano-scale science instruments.
Anasys, headquartered in Santa Barbara, California, provides products used for nanoprobe-based thermal and infrared measurements. The company’s nanoIR products are used by academic and industrial scientists, by engineers in soft-matter and hard-matter materials science, and in life science applications. Recently, Anasys introduced 10-nanometer resolution nanoIR imaging.
Mark R. Munch, president of the Bruker Nano Group, said the company is excited to add this high-growth area to its portfolio of nanoscale microscopy and spectroscopy measurement products. “There are tremendous application and technology synergies that will benefit our customers,” he said.
“We are very happy to have found a company like Bruker to take the business to the next level,” said Roshan Shetty, cofounder and former CEO of Anasys.
The fifty-five-year-old Bruker Corporation has more than 6000 employees at over 90 locations on five continents. The company provides technological solutions for life science molecular research, applied and pharmaceutical applications, microscopy, nano-analysis, and industrial applications. Bruker products include systems for cell biology, preclinical imaging, clinical phenomics and proteomics research, clinical microbiology, and for molecular pathology research.
New Fluorescence Model Enhances Aflatoxin Detection in Vegetable Oils
March 12th 2025A research team from Nanjing University of Finance and Economics has developed a new analytical model using fluorescence spectroscopy and neural networks to improve the detection of aflatoxin B1 (AFB1) in vegetable oils. The model effectively restores AFB1’s intrinsic fluorescence by accounting for absorption and scattering interferences from oil matrices, enhancing the accuracy and efficiency for food safety testing.
New Study Shows FT-MIR Spectroscopy Can Authenticate Parmigiano Reggiano Farming Practices
March 11th 2025A new study published in the Journal of Dairy Science demonstrates that FT-MIR spectroscopy can effectively authenticate farming practices and dairy systems in Parmigiano Reggiano production but has limited ability to verify animal welfare parameters.
Advancing NIR and Imaging Spectroscopy in Food and Bioanalysis
March 11th 2025Our full-length interview with Huck covers more than just NIR spectroscopy in food and bio analysis. Spectroscopy sat down with Huck to also discuss current trends going on in spectroscopy, delving into what challenges spectroscopists face today and how they can solve these concerns.
The State of Forensic Science: Previewing an Upcoming AAFS Video Series
March 10th 2025Here, we provide a preview of our upcoming multi-day video series that will focus on recapping the American Academy of Forensic Sciences Conference, as well as documenting the current state of the forensic science industry.