The researchers believe that the results of this study can contribute to the development of more effective and safer approaches to reduce the toxicity of heavy metals in food and the environment.
A team of researchers investigated the effects of cadmium (Cd) ions on the denaturation kinetics of hen egg white lysozyme (HEWL) under thermal and acidic conditions (1). Their study was published in the journal Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (1).
A combination of spectroscopic techniques, including spontaneous Raman spectroscopy, Thioflavin-T fluorescence, atomic force microscopy (AFM) imaging, far-UV circular dichroism spectroscopy, and transmittance assays, were used in the study (1). The researchers recorded four distinctive Raman spectral markers for protein tertiary and secondary structures to track the kinetics of conformational transformation (1).
The results showed that Cd(II) ions effectively accelerated the disruption of tertiary structure and promoted the direct formation of organized β-sheets from the uncoiling of α-helices by skipping intermediate random coils (1). Additionally, the researchers found that with the action of Cd(II) ions, the initially resulting oligomers with disordered structures tended to assemble into aggregates with random structures like gels more than amyloid fibrils, along with a so-called “off-pathway” denaturation pathway that the researchers describe in their paper (1).
The study highlights the ion-specific effects of cadmium on protein denaturation kinetics under thermal and acidic conditions (1). These findings contribute to the understanding of the molecular mechanisms behind Cd-induced protein denaturation and may have implications in the fields of biochemistry and environmental toxicology (1).
The researchers believe that the results of this study can contribute to the development of more effective and safer approaches to reduce the toxicity of heavy metals in food and the environment (1). The results also advance an in-depth understanding of corresponding ion-specific effects (1). Further research in this area can provide a deeper understanding of the interaction between proteins and heavy metals, which can have significant implications in the field of environmental science and food safety.
(1) Liu, L.; Li, X.; Chen, N.; Chen, X.; Xing, L.; Zhou, X.; Liu, S. Influence of cadmium ion on denaturation kinetics of hen egg white-lysozyme under thermal and acidic conditions. Spectrochim. Acta A 2023, 296, 122650. DOI:10.1016/j.saa.2023.122650
Remembering Engineering Pioneer Sir David McMurtry
December 16th 2024The world of engineering and innovation mourns the loss of a towering figure with the passing of Sir David McMurtry, CBE, RDI, FREng, FRS, CEng, FIMechE, co-founder and Non-Executive Director of Renishaw. Known for his brilliance, humility, and groundbreaking contributions to metrology and manufacturing, McMurtry leaves a legacy that has profoundly shaped modern engineering.
Raman Spectroscopy and Deep Learning Enhances Blended Vegetable Oil Authentication
December 10th 2024Researchers at Yanshan University have developed a groundbreaking method combining Raman spectroscopy and deep learning models to accurately identify and quantify components in blended vegetable oils.
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
Microplastics in the Desert: A Growing Concern in Phoenix Soils
December 6th 2024A recent study reveals widespread and increasing microplastic contamination in the soils of Phoenix and the Sonoran Desert, highlighting significant environmental concerns and the need for further research into their sources and impacts.
Portable and Wearable Spectrometers in Our Future
December 3rd 2024The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.