Carolyn Mountford, of the University of Newcastle (Australia) has received an Agilent Thought Leader Award in recognition of her innovative work using nuclear magnetic resonance (NMR) spectroscopy technology in cancer research.
Carolyn Mountford, of the University of Newcastle (Australia) has received an Agilent Thought Leader Award in recognition of her innovative work using nuclear magnetic resonance (NMR) spectroscopy technology in cancer research. Mountford is a professor of radiology at the University of Newcastle Australia School of Health Sciences in Australia, and a director of the Center for Clinical Spectroscopy at the Brigham and Women’s Hospital in Boston.
The award will support Mountford and her team at the University of Newcastle in their pioneering research on novel in vivo NMR techniques that may help identify breast cancer in high-risk women. Preliminary data suggest that NMR may detect early changes in breast tissue that reflect rapid tumor growth. Moreover, NMR may be used to analyze primary breast tumors to determine if the cancer cells have spread to the lymph nodes, preventing unnecessary surgery.
“NMR spectroscopy is a highly accurate and precise tool for analyzing human tissue,” Mountford said in a statement. “This technology could help pathologists diagnose breast cancer more quickly and accurately, enable surgeons to make more informed decisions and, ultimately, improve the quality of cancer care for patients.”
The Agilent Thought Leader Award promotes fundamental scientific advances by contributing financial support, products, and expertise to the research of influential thought leaders in life sciences and chemical analysis.
CRAIC Technologies Announces Launch of Maceral Identification Solution for Coal Analysis
July 3rd 2025In a press release, CRAIC Technologies announced the launch of its novel maceral identification solution that is designed to improve coal analysis. This new system contains high-speed imaging, servo-driven scanning, and intelligent software that work together to generate more accurate maceral analysis.
Evaluating Microplastic Detection with Fluorescence Microscopy and Raman Spectroscopy
July 2nd 2025A recent study presented a dual-method approach combining confocal micro-Raman spectroscopy and Nile Red-assisted fluorescence microscopy to enhance the accuracy and throughput of microplastics detection in environmental samples.
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.