Carolyn Mountford, of the University of Newcastle (Australia) has received an Agilent Thought Leader Award in recognition of her innovative work using nuclear magnetic resonance (NMR) spectroscopy technology in cancer research.
Carolyn Mountford, of the University of Newcastle (Australia) has received an Agilent Thought Leader Award in recognition of her innovative work using nuclear magnetic resonance (NMR) spectroscopy technology in cancer research. Mountford is a professor of radiology at the University of Newcastle Australia School of Health Sciences in Australia, and a director of the Center for Clinical Spectroscopy at the Brigham and Women’s Hospital in Boston.
The award will support Mountford and her team at the University of Newcastle in their pioneering research on novel in vivo NMR techniques that may help identify breast cancer in high-risk women. Preliminary data suggest that NMR may detect early changes in breast tissue that reflect rapid tumor growth. Moreover, NMR may be used to analyze primary breast tumors to determine if the cancer cells have spread to the lymph nodes, preventing unnecessary surgery.
“NMR spectroscopy is a highly accurate and precise tool for analyzing human tissue,” Mountford said in a statement. “This technology could help pathologists diagnose breast cancer more quickly and accurately, enable surgeons to make more informed decisions and, ultimately, improve the quality of cancer care for patients.”
The Agilent Thought Leader Award promotes fundamental scientific advances by contributing financial support, products, and expertise to the research of influential thought leaders in life sciences and chemical analysis.
Improving Fluorescence and Raman Techniques for Environmental Microplastic Analysis
March 31st 2025A recent study conducted at the LaserLaB Amsterdam and Vrije Universiteit Amsterdam (the Netherlands) explored spectroscopic imaging techniques, including Raman and fluorescence microscopy, for characterizing microplastics (MPs), focusing on optimizing sample preparation, particularly density separation, and Nile Red staining.Spectroscopy spoke to Merel Konings, corresponding author of the paper resulting from the study, about her work
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.