Carolyn Mountford, of the University of Newcastle (Australia) has received an Agilent Thought Leader Award in recognition of her innovative work using nuclear magnetic resonance (NMR) spectroscopy technology in cancer research.
Carolyn Mountford, of the University of Newcastle (Australia) has received an Agilent Thought Leader Award in recognition of her innovative work using nuclear magnetic resonance (NMR) spectroscopy technology in cancer research. Mountford is a professor of radiology at the University of Newcastle Australia School of Health Sciences in Australia, and a director of the Center for Clinical Spectroscopy at the Brigham and Women’s Hospital in Boston.
The award will support Mountford and her team at the University of Newcastle in their pioneering research on novel in vivo NMR techniques that may help identify breast cancer in high-risk women. Preliminary data suggest that NMR may detect early changes in breast tissue that reflect rapid tumor growth. Moreover, NMR may be used to analyze primary breast tumors to determine if the cancer cells have spread to the lymph nodes, preventing unnecessary surgery.
“NMR spectroscopy is a highly accurate and precise tool for analyzing human tissue,” Mountford said in a statement. “This technology could help pathologists diagnose breast cancer more quickly and accurately, enable surgeons to make more informed decisions and, ultimately, improve the quality of cancer care for patients.”
The Agilent Thought Leader Award promotes fundamental scientific advances by contributing financial support, products, and expertise to the research of influential thought leaders in life sciences and chemical analysis.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.