Dutch astronomers C.P. de Vries and E. Costantini, both of SRON/Utrecht University Netherlands, used the Reflection Grating Spectrometer onboard the XMM-Newton satellite to obtain high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from Earth.
Dutch astronomers C.P. de Vries and E. Costantini, both of SRON/Utrecht University Netherlands, used the Reflection Grating Spectrometer onboard the XMM-Newton satellite to obtain high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from Earth. For the first time, they have found clear evidence of an extended X-ray absorption fine structure (EXAFS) signature coming from the dust seen toward a celestial source.
EXAFS is a powerful tool for studying the grains in the interstellar medium. It is based upon the phenomenon that X-ray photons can eject electrons from atoms inside solid particles, which in turn can be backscattered onto the emitting atom by atoms in their immediate neighborhood. This causes characteristic sinusoidal absorption features in the X-ray spectrum of a distant source that depend on the structure of the absorbing solid material.
EXAFS has a major advantage over infrared (IR) spectroscopy, which can also be used to study crystalline dust, in that in can probe the solid matter along the line of sight at the level of the atomic structure. IR spectroscopy provides information at the mineralogical level. As a result, EXAFS gives a more detailed picture of the chemical composition and atomic structure of amorphous grains than is possible with IR spectroscopy.
Multi-Analytical Study Reveals Complex History Behind Ancient Snake Motif in Argentine Rock Art
May 22nd 2025A recent study published in the Journal of Archaeological Science: Reports reveals that a multi-headed snake motif at Argentina's La Candelaria rock shelter was created through multiple painting events over time.
Fluorescence Spectroscopy Emerges as Rapid Screening Tool for Groundwater Contamination in Denmark
May 21st 2025A study published in Chemosphere by researchers at the Technical University of Denmark demonstrates that fluorescence spectroscopy can serve as a rapid, on-site screening tool for detecting pharmaceutical contaminants in groundwater.
New Deep Learning AI Tool Decodes Minerals with Raman Spectroscopy
May 21st 2025Researchers have developed a powerful deep learning model that automates the identification of minerals using Raman spectroscopy, offering faster, more accurate results even in complex geological samples. By integrating attention mechanisms and explainable AI tools, the system boosts trust and performance in field-based mineral analysis.