A new publication explores the concept of secondary model-based examination of model-free analysis results in chemical data, revealing hidden insights. His research highlights the significance of integrating quantitative model-based evaluations to enhance data interpretation and extract valuable information.
Marcel Maeder, a researcher from the University of Newcastle, delves into the lesser-known aspect of Edmund R. Malinowski's work, focusing on his chemical model-based analyses of chemical data. Published in the Journal of Chemometrics, Maeder discusses the concept of subjecting primary model-free analysis results to a secondary quantitative model-based evaluation, offering two illustrative examples from Malinowski's research (1).
Analytics data big business intelligence background | Image Credit: © BillionPhotos.com - stock.adobe.com
Although Malinowski is renowned for his work on factor analysis, his contributions to chemical model-based analyses often go unrecognized. In this research contribution, Maeder highlights Malinowski's innovative approach of subjecting primary model-free analysis results to a secondary quantitative model-based examination. The discussion revolves around two examples from Malinowski's research: the complexation of Cu2+ with cyclodextrin and the di- and trimerization of methylene blue.
In both examples, Malinowski employed spectrophotometric titration data, which were initially analyzed using window factor analysis (WFA) to generate concentration profiles. These primary, model-free results provided qualitative insights into the underlying chemical processes. However, Malinowski took it a step further by subjecting the concentration profiles to additional quantitative analyses based on the reaction models previously obtained. This secondary examination enabled the determination of numerical values for the equilibrium constants underlying the chemical reactions.
Maeder's research contribution serves to highlight and compare this methodology with alternative approaches to analyzing the same data. By incorporating secondary model-based evaluation, researchers can unlock hidden insights and extract quantitative information from model-free analysis results. This comprehensive approach allows for a deeper understanding of the chemical systems under investigation and enhances the overall interpretation of experimental data.
The work of Malinowski and the concept of secondary model-based examination have significant implications for chemical data analysis. By combining model-free and model-based approaches, researchers can maximize the utility of their data and extract valuable quantitative information that would otherwise remain obscured. This methodology opens doors for more comprehensive analyses and contributes to the advancement of chemometric techniques.
This research sheds light on an overlooked aspect of Malinowski's work, emphasizing the importance of integrating model-based evaluations in chemical data analysis. This research not only pays tribute to Malinowski's contributions but also inspires further exploration of innovative approaches to extract meaningful information from complex chemical systems.
(1) Maeder, M. Secondary, Model-Based Examination of Model-Free Analysis Results. Making the Most of Soft-Modelling Outcomes. J. Chemom. 2023, ASAP. DOI: 10.1002/cem.3498
Best of the Week: AI and IoT for Pollution Monitoring, High Speed Laser MS
April 25th 2025Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.
Smarter Sensors, Cleaner Earth Using AI and IoT for Pollution Monitoring
April 22nd 2025A global research team has detailed how smart sensors, artificial intelligence (AI), machine learning, and Internet of Things (IoT) technologies are transforming the detection and management of environmental pollutants. Their comprehensive review highlights how spectroscopy and sensor networks are now key tools in real-time pollution tracking.
New AI Strategy for Mycotoxin Detection in Cereal Grains
April 21st 2025Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.
Best of the Week: AI and IoT for Pollution Monitoring, High Speed Laser MS
April 25th 2025Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.
Smarter Sensors, Cleaner Earth Using AI and IoT for Pollution Monitoring
April 22nd 2025A global research team has detailed how smart sensors, artificial intelligence (AI), machine learning, and Internet of Things (IoT) technologies are transforming the detection and management of environmental pollutants. Their comprehensive review highlights how spectroscopy and sensor networks are now key tools in real-time pollution tracking.
New AI Strategy for Mycotoxin Detection in Cereal Grains
April 21st 2025Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.
2 Commerce Drive
Cranbury, NJ 08512