Researchers in Norway used Fourier transform infrared spectroscopy protein composition from poultry.
A team of scientists in Norway are investigating Fourier transform infrared spectroscopy (FT-IR) to predict collagen content in hydrolyzed protein samples.
The research, which was published in the Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, used a dry-film FT-IR approach the scientists were able to reveal characteristic spectral features of collagen and collagen peptides in the spectra, which produced sound qualitative regression models for collagen content measurements (1). The samples were obtained through enzymatic protein hydrolysis of poultry by-products.
“By employing a hierarchical cluster-partial least squares (HC-PLS) calibration model the prediction performance of samples with lower collagen content improved significantly,” the authors wrote in the study. “However, for samples with higher collagen content the prediction performance remained similar to the global PLS approach.”
HC-PLS is a multivariate data analysis technique that combines hierarchical cluster analysis (HCA) with partial least squares (PLS) regression. HC-PLS first groups similar samples using HCA, forming clusters of similar samples. PLS regression is then applied to each cluster individually, and thus enhances predictive modeling performance within each group, yielding lower errors and improved overall model predictive performance.
The researchers used dry film FT-IR and conducted a HC-PLS calibration model, which provided a low prediction error when validated.
The scientists found that their results matched well with previously published FT-IR studies on collagen.
“This is also one of few examples where FT-IR is successfully used to quantify protein composition,” the scientists wrote. “The dry-film FT-IR approach presented in the study is expected to be an important tool in the growing industrial segment that is based on sustainable utilization of collagen-rich biomass.”
Reference
Kristoffersen, K. A.; Måge, I.; Wubshet, S. G.; Böcker, U.; Riiser Dankel, K.; Lislelid, A.; Rønningen, M. A.; Afseth, N. K. FTIR-Based Prediction of Collagen Content in Hydrolyzed Protein Samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023, 301, 122919. DOI:10.1016/j.saa.2023.122919.
The Big Review III: Molecular Vibration Theory
January 2nd 2025It has occurred to me that, in the 10+ years I have been writing about molecular vibrations, I have never introduced my readers to its basic theory! I will rectify that now. Some of this is new material, and some will be review. Either way, it is important that all this material be covered in one place.
Raman Microscopy for Characterizing Defects in SiC
January 2nd 2025Because there is a different Raman signature for each of the polymorphs as well as the contaminants, Raman microscopy is an ideal tool for analyzing the structure of these materials as well as identifying possible contaminants that would also interfere with performance.
ICP-MS Highlights: A Spectroscopy Year in Review
December 28th 2024Reflecting on 2024, the editors of Spectroscopy highlight some of the most notable articles and online content on inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled-optical emission spectroscopy (ICP-OES).