A new study published in Spectrochimica Acta Part B: Atomic Spectroscopy investigated the effects of heterogeneity, including grain size and mineralogical composition, on micro-beam X-ray fluorescence (XRF) scanning spectroscopy. XRF is a useful tool for environmental analysis, because of its high spatial resolution.
The study, led by Nagayoshi Katsuta, an associate professor at Gifu University in Japan, used binary powdered mixtures of ferric oxide (Fe2O3) in the calcium carbonate (CaCO3) or silicon dioxide (SiO2) matrix with nine grain size fractions, four Fe2O3 concentrations, and fine-grained sedimentary cores from Lake Baikal, a lake in south-east Siberia, for analysis. Grain size helps determine mechanical properties and corrosion behavior of materials.
The findings of the study demonstrate that iron (Fe) intensity decreases as grain size increases, but if the grain size is constant, its intensity has a linear relationship with the composition of Fe2O3. The experimental data were in good agreement with theoretical curves, which suggest that if a phase that contains fluorescent elements has narrow ranges of concentration and grain size, the micro-beam XRF spectroscopy enables highly precise calibration from the XRF intensity to element concentration.
The theoretical curves of the Lake Baikal sediment core suggest that the Fe intensity has about a 30% maximum difference in the median grain size range of 3.9–28.2 μm. This variation appears in a scatter of regression between Fe intensity and concentration, but it scarcely affected the XRF intensity variability of sediment composition.
The study provides valuable insights into heterogeneity effects on micro-beam XRF spectroscopy, which can be used to improve the accuracy and precision of elemental analysis in various fields, including earth and environmental sciences.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Katsuta, N.; Umemura, A.; Naito, S.; et al. Heterogeneity Effects in Micro-Beam XRF Scanning Spectroscopy of Binary Powdered Mixtures and Lake Sediments. Spectrochim. Acta, Part B 2023, 210, 106817. DOI: 10.1016/j.sab.2023.106817
The Advantages and Landscape of Hyperspectral Imaging Spectroscopy
December 9th 2024HSI is widely applied in fields such as remote sensing, environmental analysis, medicine, pharmaceuticals, forensics, material science, agriculture, and food science, driving advancements in research, development, and quality control.
Portable and Wearable Spectrometers in Our Future
December 3rd 2024The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.
Analyzing Oxygen Vacancy Using X-Ray Photoelectron Spectroscopy
November 26th 2024A new study published in the Journal of the European Ceramic Society introduces three XPS methodologies for accurately quantifying oxygen vacancies in metal oxides, challenging traditional misinterpretations and advancing material science research.
Handheld X-Ray Technology Unveils New Forensic Tool
September 16th 2024A recent study by researchers at the University of Porto demonstrates the potential of handheld X-ray fluorescence spectrometers to analyze cigarette ash, providing a new method for forensic investigation. This non-destructive technique can differentiate between various tobacco brands based on the elemental composition of their ash.