Purdue University (West Lafayette, Indiana) researchers recently received more than $200,000 in grants to commercialize their spectroscopy innovations designed to facilitate biological and medical research and diagnostics. The grants were awarded by the Purdue Research Foundation’s Trask Innovation Fund, which assists faculty and staff whose discoveries are commercialized through the Purdue Office of Technology Commercialization.
Purdue University (West Lafayette, Indiana) researchers recently received more than $200,000 in grants to commercialize their spectroscopy innovations designed to facilitate biological and medical research and diagnostics. The grants were awarded by the Purdue Research Foundation’s Trask Innovation Fund, which assists faculty and staff whose discoveries are commercialized through the Purdue Office of Technology Commercialization.
Corey Neu, assistant professor in Purdue’s College of Engineering, received $50,000 to support “Critical Advancement to a New AFM/NMR Instrument.” The innovation allows researchers to better understand cell movement and physical and chemical properties at the single-cell level.
“The combined AFM/NMR instrument that we are building with the funding is expected to provide direct biophysical (e.g., metabolism) measures in single cells through the combined actions of two complimentary techniques: atomic force microscopy (AFM) and nuclear magnetic resonance (NMR).” Neu explained, “The technique takes advantage of a new AFM cantilever probe that operates also as a NMR resonator.”
Colleague Jonathan D. Gortat said that the combined technique could be used widely to better understand a variety of disease states ranging from the nexus between complex cell biochemistry and the matrix-like structure of cartilage to better understanding the progression of the diseases or the mechanism by which cancerous cells metastasize.
Neu and his colleagues currently are using a prototype of the system to understand cell mechanotransuction and differentiation, two processes that involve distinct changes in biophysical and biochemical aspects of the cells. They would like to use this technique in the future as a diagnostic tool for rare cell populations based on the complementary measures.
Another Trask Innovation Fund awardee is Ji-Xin Cheng, assistant professor at the College of Science, who received $50,000 for “Fast Spectroscopy Imaging by Parallel-detection of Stimulated Raman Scattering.” The innovation will allow researchers, clinicians, or pathologists to look at live biological samples, without labeling, in real time.
Fluorescence Spectroscopy Emerges as Rapid Screening Tool for Groundwater Contamination in Denmark
May 21st 2025A study published in Chemosphere by researchers at the Technical University of Denmark demonstrates that fluorescence spectroscopy can serve as a rapid, on-site screening tool for detecting pharmaceutical contaminants in groundwater.
China Institutions Team Up to Oxidize Toluene at Lower Temperatures
May 21st 2025Researchers from several Chinese universities have developed a low-cost, red mud-based catalyst doped with manganese oxides that efficiently oxidizes toluene at lower temperatures, offering a sustainable solution for air pollution control and industrial waste reuse.
The Future of Neurodegenerative Disease Research and the Role of IR Imaging
May 21st 2025In the final part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign talk about the key performance metrics they used to evaluate their model, and what the future of neurodegenerative disease research looks like.
How THz and THz-Raman Spectroscopy Are Used in Drug Safety, Farming, and Mining
May 20th 2025A new review by researchers from IIT Delhi and the University of Queensland highlights how Terahertz (THz) and low-wavenumber Raman (THz-Raman) spectroscopy are advancing quality control and efficiency in pharmaceuticals, agriculture, and mineral industries. These powerful non-invasive tools enable detailed multi-parameter sensing, offering deeper insight at the molecular level.