Metrohm is proud to introduce the new TacticID-1064 ST, an innovative device for material identification using see-through Raman technology. 1064 nm laser technology combines with dedicated sampling accessories and advanced data algorithms to analyze substances through many containers. By quickly separating the signature of the container from its contents, the Metrohm TacticID-1064 ST delivers accurate results and reduces operator exposure to potentially harmful materials.
Designed for optimized and efficient measurements, the TacticID-1064 ST is compact and user-friendly – eliminating the need to set up complicated methods. An innovative accessory recognition feature ensures seamless operation and minimizes operator training. This handheld device provides reliable results at the sample contact point, guaranteeing faster outcomes, reduced downtime, and heightened confidence in the material identification process.
Chemical identification in quality control, forensics, hazmat, and customs checkpoints demands precise material identification. With its extensive Raman library and onboard guides, the TacticID-1074 ST is designed to handle a wide range of substances during an extended shift or at the site of a dangerous chemical spill. It delivers accurate results when it matters most.
Metrohm
www.metrohm.com/en_us.html
Cancer Diagnosis: New Raman Spectroscopy Method Eliminates Fluorescence Interference
January 21st 2025Researchers from Tsinghua University have developed an innovative dual-wavelength Raman spectroscopy method that eliminates fluorescence interference in measuring esophageal tissue samples. This development enables precise identification of molecular changes in these tissues, with potential applications in early esophageal cancer diagnosis.
Raman Spectroscopy to Detect Lung Cancer and Monitor Vaccine Effects
January 20th 2025A new study highlights the use of Raman spectroscopy to detect lung cancer and evaluate the effects of the PCV13 vaccine. Researchers found distinct biochemical changes in lung cancer patients and healthy individuals, revealing the vaccine's significant impact on immune response.
New SERS-Microfluidic Platform Classifies Leukemia Using Machine Learning
January 14th 2025A combination of surface-enhanced Raman spectroscopy (SERS) and machine learning on microfluidic chips has achieved an impressive 98.6% accuracy in classifying leukemia cell subtypes, offering a fast, highly sensitive tool for clinical diagnosis.
Machine Learning-Enhanced SERS Technology Advances Cancer Detection
January 13th 2025Researchers at the Chinese Academy of Sciences have developed an optical detection strategy for circulating tumor cells (CTCs), combining machine learning (ML) and dual-modal surface-enhanced Raman spectroscopy (SERS). This approach offers high sensitivity, specificity, and efficiency, potentially advancing early cancer diagnosis.
Surface-Enhanced Transmission Raman Spectroscopy (SETRS) Enhances Pharmaceutical Quality Control
January 7th 2025Researchers from the University of Liege have demonstrated the potential of surface-enhanced transmission Raman spectroscopy (SETRS) for detecting impurities in pharmaceuticals. The study highlights SETRS’s superior sensitivity, precision, and efficiency in quantifying toxic impurities like 4-aminophenol (4-AP), offering a promising alternative to traditional methods.
Edible Oil Testing: Handheld Raman Spectroscopy Offers Quick, Reagent-Free Answers
January 6th 2025Researchers have developed a rapid, reagent-free method to estimate the saponification value (SV) of edible oils using handheld Raman spectroscopy. This innovative approach simplifies oil quality testing, cutting time and costs while enhancing accuracy and portability.