The December meeting of the New York and New Jersey Society for Applied Spectroscopy (NYSAS) was held on December 5 at the Horiba Optical Spectroscopy Center in Piscataway, New Jersey. The guest speaker, Curtis Marcott, was one of the 2018 tour speakers offered by the Society for Applied Spectroscopy (SAS).
The December meeting of the New York and New Jersey Society for Applied Spectroscopy (NYSAS) was held on December 5 at the Horiba Optical Spectroscopy Center in Piscataway, New Jersey. The guest speaker, Curtis Marcott, was one of the 2018 tour speakers offered by the Society for Applied Spectroscopy (SAS).
Marcott is a senior partner at Light Light Solutions, a spectroscopic consulting firm in Athens, Georgia. He is a former research fellow at Procter & Gamble (Cincinnati, Ohio), and was the 2011 president of the editorial advisory board of Applied Spectroscopy. Additionally, Marcott is an affiliated professor of materials science and engineering at the University of Delaware (Newark, Delaware) and an adjunct professor in the Department of Chemistry and Biochemistry at Miami University (Oxford, Ohio).
In his presentation, Marcott explained that spectral data provides fast, easy access to rich information regarding a molecule’s history and interaction with other molecules in a system. “The problem is that there is a significant amount of effort involved in interpretation,” he said. He described three major limitations of mid-infrared (IR) spectroscopy that have limited its usefulness for solving real world problems:
After briefly reviewing the evolution of mid-IR spectroscopy over the past 50 years, Marcott discussed a new approach that uses the photothermal IR response of the sample while eliminating virtually all of the limitations discussed previously. This approach uses a tunable pulsed mid-IR laser to induce a photothermal effect into a sample surface which is subsequently measured using a visible probe laser focused on the sample. Applications of this approach discussed included characterization of polymer layers in packaging, bone cross sections, amide I and amide II orientation in spider silk, and water and nucleic acid analysis of epithelial cheek cells.
Twenty eight people attended the meeting, and the New England Regional section of SAS was invited to participate through a virtual presentation.
More information about NYSAS schedule of meetings can be found at www.nysas.org.
Spectroscopy and GPC to Evaluate Dissolved Organic Matter
February 4th 2025In a new study, a team of scientists used gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-visible spectroscopy to assess road runoff from drinking water treatment plants to evaluate the method' capacity for removing dissolved organic matter (DOM).
Blood-Glucose Testing: AI and FT-IR Claim Improved Accuracy to 98.8%
February 3rd 2025A research team is claiming significantly enhanced accuracy of non-invasive blood-glucose testing by upgrading Fourier transform infrared spectroscopy (FT-IR) with multiple-reflections, quantum cascade lasers, two-dimensional correlation spectroscopy, and machine learning. The study, published in Spectrochimica Acta Part A, reports achieving a record-breaking 98.8% accuracy, surpassing previous benchmarks for non-invasive glucose detection.
Distinguishing Horsetails Using NIR and Predictive Modeling
February 3rd 2025Spectroscopy sat down with Knut Baumann of the University of Technology Braunschweig to discuss his latest research examining the classification of two closely related horsetail species, Equisetum arvense (field horsetail) and Equisetum palustre (marsh horsetail), using near-infrared spectroscopy (NIR).