Ishan Barman, an associate professor at Johns Hopkins University in Baltimore, Maryland, has been named the 2023 winner of the Coblentz Society Clara Craver Award. Barman held a plenarysession at SciX in Sparks, Nevada on October 9 about transformative biophotonics in disease detection and monitoring to commemorate his win (1). This award recognizes the accomplishments of a young researcher in applied vibrational spectroscopy.
This session focused on the cutting-edge advancements in biophotonics for disease detection and monitoring, through plasmon-enhanced Raman spectroscopy. Barman utilizes Raman spectroscopy in his research due to its non-invasive nature and ability to directly analyze cell and tissue compositions in their native states.
“This made [Raman] an ideal choice for investigating the subtle changes induced by microbiota-secreted metabolites in cancer cells,” he told Spectroscopy in an interview (2).
The research involved focused on plasmonic nano-assemblies featuring nanogaps between nanoparticles (NPs), which manifest strong electromagnetic field localization and enable spectroscopic enhancement approaching the single-molecule regime. Specifically, the research centers on the DNA-silicified template for Raman optical beacon (DNA-STROBE), a synthetic innovation that harnesses DNA-templated sol-gel chemistry for the creation of robust nanocavities. From there, it introduces DNA self-assembled RING nanoprobes for quantum biosensing.
The team integrated nitrogen-vacancy centers with plasmonic nanocavities, which offered enhanced spatiotemporal resolution for detecting ion flux-induced weak magnetic fields and spin states, opening avenues for understanding spin dynamics in biological systems. For the final addition to this system, enzyme-mediated precision sensing was explored through self-amplifying Raman nanoprobes, capable of in situ assembly for molecular characterization and disease visualization. Using this platform, the team discovered an effect where short-term exposure to microbiota-secreted metabolites had lasting effects on cancer cell behavior.
“We found that the Bacteroides fragilis toxin (BFT)-induced biomolecular changes not only persisted but were potentially enhanced after tumor growth, highlighting the significance of microbiota-cancer cell interactions in shaping cancer progression,” Barman explained (2). These solutions allowed for the progression of spectroscopic principles into practical applications, which shows great potential for disease detection, cell analysis, and quantum biosensing.
(1) SciX. Plenary Sessions: The Coblentz Society Clara Craver Award; Ishan Barman. FACSS Analytical Science and Innovation 2023. https://scixconference.org/scix2023program/ (accessed 2023-10-03)
(2) Chasse, J. Examining Pathogen-Induced Morphomolecular Divergence in Tumor-Derived Cells with Raman Spectroscopy: An Interview with Clara Craver Award Winner Ishan Barman. Spectroscopy 2023. https://www.spectroscopyonline.com/view/examining-pathogen-induced-morphomolecular-divergence-in-tumor-derived-cells-with-raman-spectroscopy-an-interview-with-clara-carver-award-winner-ishan-barman (accessed 2023-10-05)
Year in Review: The Latest in Raman Spectroscopy
December 26th 2024This year-in-review showcases the standout technical articles, compelling interviews, and key news stories that defined the pages of Spectroscopy. In this year in review, the editors of Spectroscopy highlight some of the top published technical articles, interviews, and news content published.
Remembering Engineering Pioneer Sir David McMurtry
December 16th 2024The world of engineering and innovation mourns the loss of a towering figure with the passing of Sir David McMurtry, CBE, RDI, FREng, FRS, CEng, FIMechE, co-founder and Non-Executive Director of Renishaw. Known for his brilliance, humility, and groundbreaking contributions to metrology and manufacturing, McMurtry leaves a legacy that has profoundly shaped modern engineering.
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
Combining SERS and Machine Learning to Advance Single-Cell Analysis
December 13th 2024Researchers from Stanford University have combined surface-enhanced Raman spectroscopy (SERS) with machine learning (ML) to enable rapid, precise single-cell analysis, offering potentially transformative applications in diagnostics and personalized medicine.