In a recent study, laser-induced breakdown spectroscopy (LIBS) was used, for the first time, to quantitatively analyze powder materials used in additive technologies.
In a recent study (1), laser-induced breakdown spectroscopy (LIBS) was used, for the first time, to quantitatively analyze powder materials used in additive technologies. Researchers found that using LIBS to map loose metal powder attached to double-sided adhesive tape provided high reproducibility of measurements even for powder mixtures with a large range of particle densities (tungsten carbide particles in nickel alloy powder).
Calibration curve construction and accuracy estimation by the leave-one-out cross-validation procedure was used to estimate LIBS analytical capabilities for tungsten and carbon analysis. A LIBS and X-ray fluorescence (XRF) spectroscopy comparison showed better results for LIBS analysis. Improved analysis accuracy and the capability to quantify light elements (for example, carbon) demonstrated the suitability of LIBS as a technique for express on-site multielement analysis of powder materials used in additive technologies.
Reference
V.N. Lednev, P.A. Sdvizhenskii, M. Ya. Grishin, M.A. Davidov, A. Ya. Stavertiy, R.S. Tretyakov, M.V. Taksanc, and S.M. Pershin, arXiv.org (2018). https://arxiv.org/pdf/1802.00236.pdf
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.