New research conducted using mass spectrometers has provided insight into key areas of stroke evaluation and treatment.
New research conducted usingmass spectrometers has providedinsight into key areas of strokeevaluation and treatment.Led byMingMing Ning, a clinical neurologistand researcher at the ClinicalProteomics Research Center atMassachusetts General Hospital(Boston, Massachusetts), the researchprovides potentially significant new insightinto patent foramen ovale (PFO) and itsconnection with strokes. PFO refers to acongenital heart abnormality, which leavesopen a passage between the left and rightsides of the heart, enabling blood clots totravel from the leg to the brain.
Strokes are the leading cause ofserious long-term disability in theUnited States, and with PFO affecting25% of the worldwide population,the potential health impacts aresignificant. Identification of potentialbiomarkers in mass spectrometrydata derived from the collaborativeresearch provides scientists withnew insights into how PFO can berelated to strokes. If confirmed,these insights may be important inhelping doctors to select the mostappropriate treatment for individualPFO stroke patients.
The research, conductedby Thermo Fisher Scientific’sBiomarker Research Initiativesin Mass Spectrometry Center incollaboration with MassachusettsGeneral Hospital, Harvard University,has also led to potential insightsin the understanding of tissueplasminogen activator (tPA) instroke treatment. tPA is a drugthat can be safely administeredonly within a very short windowof time after stroke symptomsoccur. The treatment, whichworks by dissolving blood clots,has proven highly effective, butinvolves significant risks. Only 5%of patients fit the timeframe criteriawithin which it is safe to administertPA. Through the use of massspectrometry–based proteomicsworkflows, data from the researchmay help scientists identify a widerscope of patients who might benefitfrom tPA.
Developing Sensitive Optical Methods for Early Disease Detection
May 5th 2025Noureddine Melikechi, dean of the Kennedy College of Sciences and professor at the University of Massachusetts Lowell, shares his work on the early detection of diseases like epithelial ovarian cancer and Alzheimer’s.
The Role of LIBS in ChemCam and SuperCam: An Interview with Kelsey Williams, Part III
May 2nd 2025In this extended Q&A interview, we sit down with Kelsey Williams, a postdoctoral researcher at Los Alamos National Laboratory (LANL), who is working on planetary instrumentation using spectroscopic techniques such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). In Part III, Williams goes into detail about ChemCam and SuperCam and how LIBS is used in both these instruments.