Labcyte, Inc. (Sunnyvale, California), an acoustic dispensing company, has been awarded $1 million to create an innovative process to detect cancer-related proteins in samples, with initial work in breast cancer detection.
Labcyte, Inc. (Sunnyvale, California), an acoustic dispensing company, has been awarded $1 million to create an innovative process to detect cancer-related proteins in samples, with initial work in breast cancer detection.
Labcyte’s acoustic liquid handling enables biomarker detection by measuring multiple proteins with a MALDI mass spectrometer. Recent work with the Canary Center at Stanford (Palo Alto, California), also supported by the National Cancer Institute, showed the ability to achieve the sensitivity required for quantifying very small amounts of proteins associated with ovarian cancer. Measuring the amount of multiple proteins, and at lower cost, is an essential step in developing new diagnostic tools for disease treatment and monitoring.
“I am particularly enthusiastic about participating with Labcyte on the further development of their protein multiplexed biomarker detection platform,” Dr. Mark Stolowitz, director of the Proteomics Core Facility at the Canary Center at Stanford for Cancer Early Detection said in a statement. “This novel immunoaffinity mass spectrometry based approach exploits MALDI-TOF-MS for detection of proteotypic peptides. The platform affords sensitivity comparable to that of triple-quad mass spectrometers while providing significantly greater throughput and better precision than that obtainable from LC-MS-MS based approaches. Over the next few years, the Labcyte platform should provide the high throughput biomarker verification/validation solution that researchers have sought in conjunction with the emergence of clinical proteomics.”
In addition to working with the Canary Center, the Labcyte project includes collaboration with the Fred Hutchinson Cancer Research Center in Seattle, Washington.
Improving Fluorescence and Raman Techniques for Environmental Microplastic Analysis
March 31st 2025A recent study conducted at the LaserLaB Amsterdam and Vrije Universiteit Amsterdam (the Netherlands) explored spectroscopic imaging techniques, including Raman and fluorescence microscopy, for characterizing microplastics (MPs), focusing on optimizing sample preparation, particularly density separation, and Nile Red staining.Spectroscopy spoke to Merel Konings, corresponding author of the paper resulting from the study, about her work
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.