Labcyte, Inc. (Sunnyvale, California), an acoustic dispensing company, has been awarded $1 million to create an innovative process to detect cancer-related proteins in samples, with initial work in breast cancer detection.
Labcyte, Inc. (Sunnyvale, California), an acoustic dispensing company, has been awarded $1 million to create an innovative process to detect cancer-related proteins in samples, with initial work in breast cancer detection.
Labcyte’s acoustic liquid handling enables biomarker detection by measuring multiple proteins with a MALDI mass spectrometer. Recent work with the Canary Center at Stanford (Palo Alto, California), also supported by the National Cancer Institute, showed the ability to achieve the sensitivity required for quantifying very small amounts of proteins associated with ovarian cancer. Measuring the amount of multiple proteins, and at lower cost, is an essential step in developing new diagnostic tools for disease treatment and monitoring.
“I am particularly enthusiastic about participating with Labcyte on the further development of their protein multiplexed biomarker detection platform,” Dr. Mark Stolowitz, director of the Proteomics Core Facility at the Canary Center at Stanford for Cancer Early Detection said in a statement. “This novel immunoaffinity mass spectrometry based approach exploits MALDI-TOF-MS for detection of proteotypic peptides. The platform affords sensitivity comparable to that of triple-quad mass spectrometers while providing significantly greater throughput and better precision than that obtainable from LC-MS-MS based approaches. Over the next few years, the Labcyte platform should provide the high throughput biomarker verification/validation solution that researchers have sought in conjunction with the emergence of clinical proteomics.”
In addition to working with the Canary Center, the Labcyte project includes collaboration with the Fred Hutchinson Cancer Research Center in Seattle, Washington.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.