A recent study looks at how to improve the aging life of lithium-ion batteries.
Lithium-ion batteries is a hot topic in spectroscopic circles. Because they are a key component in many electronic devices regularly used today, the performance of lithium-ion batteries is important into building a more sustainable future (1). Accurately predicting the point at which a battery will no longer function optimally is crucial for both economic and environmental reasons because it allows for better planning around battery replacement and recycling (1).
A recent study from Qingdao University explored this topic by developing and testing a new method to improve accuracy of estimating the aging life of lithium-ion batteries. This new approach, which leverages advanced machine learning techniques like variational autoencoders (VAE) and bidirectional gated recurrent units (BiGRU), could have profound implications for the use, maintenance, and economic optimization of energy storage systems (2).
In this study, led by Kai Wang of Qingdao University and published in Energy Storage Materials, introduced a model that automates the extraction of key features from electrochemical impedance spectroscopy (EIS) data was introduced (2). Traditionally, EIS data, which provides a detailed look at the internal resistance and overall health of batteries, has been difficult to analyze because of its high dimensionality (2). The complexity of this data often requires time-consuming manual processing, limiting its potential for real-time applications (2).
Conventional methods for assessing LIB health, such as EIS, have proven to be highly accurate. However, the sheer amount of data generated by these methods creates a bottleneck in analysis, particularly when multiple variables—such as temperature and cycling conditions—must be considered simultaneously (2). To overcome this issue, Wang and his team turned to artificial intelligence (AI) (2).
AI is increasingly being used in scientific research, particularly when interpreting and analyzing complex data sets (3). Wang’s study used AI here for a similar purpose. The team employed VAE and BiGRU to tackle the data complexity challenge they were encountering (2). The VAE component of the model is responsible for reducing the dimensionality of EIS data, simplifying it while retaining critical information (2). This reduction accelerates the analysis process while minimizing the computational resources needed.
Meanwhile, BiGRU was used to handle time-series data, making it ideal for mapping the reduced impedance data to the battery’s state of health and capacity over time (2). The researchers achieved good results combining VAE and BiGRU, including a mean absolute error (MAE) of less than 1.27 milliampere-hours (mAh) and a root mean square error (RMSE) under 1.43 mAh (2).
To ensure the robustness of their method, the researchers tested it under multiple scenarios, including changing the temperatures and cell degradation states to evaluate how their method performed. The research team found that their model demonstrated consistent accuracy regardless of environmental factors (2). This conclusion was an important discovery because, in practical applications, batteries are subject to fluctuating temperatures and operational conditions.
In addition to its technical accuracy, the new method offers economic benefits. By automating the feature extraction process, it reduces the labor and time costs associated with manual data analysis, which could make battery monitoring systems more accessible and affordable for industries that rely on energy storage (2).
The findings from Qingdao University represent a significant step forward in the predictive maintenance of lithium-ion batteries. As energy storage systems become increasingly integrated into global energy infrastructure, methods that improve battery longevity and performance will be vital.
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.
Diffuse Reflectance Spectroscopy to Advance Tree-Level NSC Analysis
November 28th 2024Researchers have developed a novel method combining near-infrared (NIR) and mid-infrared (MIR) diffuse reflectance spectroscopy with advanced data fusion techniques to improve the accuracy of non-structural carbohydrate estimation in diverse tree tissues, advancing carbon cycle research.
Young Scientist Awardee Uses Spectrophotometry and AI for Pesticide Detection Tool
November 11th 2024Sirish Subash is the winner of the Young Scientist Award, presented by 3M and Discovery education. His work incorporates spectrophotometry, a nondestructive method that measures the light of various wavelengths that is reflected off fruits and vegetables.
Emerging Leader Highlights Innovations in Machine Learning, Chemometrics at SciX Awards Session
October 23rd 2024Five invited speakers joined Joseph Smith, the 2024 Emerging Leader in Molecular Spectroscopy, on stage to speak about trends in hyperspectral imaging, FT-IR, surface enhanced Raman spectroscopy (SERS), and more during the conference in Raleigh.