ASTM’s committee on analytical chemistry for metals, ores, and related materials has developed a new method for analyzing the composition of aluminum and aluminum alloys.
ASTM’s committee on analytical chemistry for metals, ores, and related materials has developed a new method for analyzing the composition of aluminum and aluminum alloys. The test will help manufacturers, consumers, and laboratories verify that an alloy’s composition is within the needed limits through inductively coupled plasma–atomic emission spectrometry (ICP–AES). This method will soon be published as E3061, Test Method for Analysis of Aluminum and Aluminum Alloys by Inductively Coupled Plasma Atomic Emission Spectrometry (Performance Based Method).
The new method is performance based, but it also provides established preparation and analysis techniques. Additionally, the standard establishes expected repeatability of this method.
“The composition of an aluminum alloy is one factor that determines the final properties of the metal, such as strength, hardness, and durability,” said ASTM member Jeneé Jacobs. He noted that ICP–AES is currently being used in many laboratories as a replacement for wet chemistry techniques and other outdated analytical methods.
Using Tip-Enhanced Raman Spectroscopy in Nanoscale Chemical Analysis
March 5th 2025Tip-enhanced Raman spectroscopy (TERS) employs localized surface plasmon resonance at the apex of a sharp scanning probe microscopy tip to overcome the diffraction limit inherent in conventional Raman spectroscopy, allowing researchers the ability to access spatial resolutions down to the nanometer scale. This technique has established itself as a powerful tool in nanoscale chemical analysis, delivering previously unachieved spatial resolution with superior molecular sensitivity and chemical specificity.
Smart Farming Using AI, IoT, and Remote Sensing
March 4th 2025A study by researchers at Universidad de Talca in Chile explores the integration of artificial intelligence (AI), the Internet of Things (IoT), and remote sensing to modernize modern farming. The research highlights how these technologies optimize resource use, improve crop yields, and promote sustainable agricultural practices.