Scientists from the Rollins School of Public Health at Emory University (Atlanta, Georgia) have developed a new estimation model for the analysis of biological samples through liquid chromatography-mass spectrometry.
Scientists from the Rollins School of Public Health at Emory University (Atlanta, Georgia) have developed a new estimation model for the analysis of biological samples through liquid chromatography-mass spectrometry.
The new statistical method, created by Tianwei Yu and Hesen Peng, demonstrates that peak modeling represents a core component in processing data for LC-MS studies.
“To accurately quantify partially overlapping peaks, we developed a deconvolution method using the bi-Gaussian mixture model combined with statistical model selection,” they write in their report.
This new method allows LC-MS a way to quantify metabolites, which in turn enables more complex biological samples to be analyzed. The model created by Yu and Peng was developed by carrying out an extensive series of simulations, along with the testing of real-world samples.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.