A new optical imaging system, developed by an international team of researchers, uses ?speckle imaging,? an optical sensing technique that measures the differences in how laser light bounces off the membranes of healthy and infected red blood cells and may make diagnosing malaria easier, faster, and more accurate.
A new optical imaging system, developed by an international team of researchers, uses “speckle imaging,” an optical sensing technique that measures the differences in how laser light bounces off the membranes of healthy and infected red blood cells and may make diagnosing malaria easier, faster, and more accurate.
In a paper published in the Optical Society’s (OSA) open-access journal Biomedical Optics Express, researchers explain that by comparing the apparently random scattering (speckling) of light as it builds up from multiple images, a clear statistical pattern emerges that identifies cells that harbor the parasite responsible for malaria. The team presents its preliminary results involving 25 cell samples (12 healthy, 13 infected) in the paper.
The specific technique the researchers used is called secondary speckle sensing microscopy. By applying this imaging technique to an automated high-throughput system, the researchers were able to deliver results in as little as 30 min. They did so with a high rate of accuracy and without the need for highly trained technicians and a well-equipped hospital laboratory. The current time for diagnosis in most African medical centers is typically between 8-10 h.
“A new diagnostic tool is urgently needed,” said Dan Cojoc, lead author of the study and a researcher at the Materials Technology Institute, National Research Council (Trieste, Italy). “With a fast, portable, low-cost, and accurate diagnostic tool, physicians can confidently and quickly administer the correct therapy.”
According to the researchers, this timely diagnosis maximizes the likelihood of successful, life-saving treatment. It also minimizes the chances that inappropriate therapy will be given, which would help combat the growing problem of drug resistant malaria.
Malaria is most common in warm, wet climates where mosquitos thrive. It claims nearly one million lives a year, mostly of African children.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.