A new optical imaging system, developed by an international team of researchers, uses ?speckle imaging,? an optical sensing technique that measures the differences in how laser light bounces off the membranes of healthy and infected red blood cells and may make diagnosing malaria easier, faster, and more accurate.
A new optical imaging system, developed by an international team of researchers, uses “speckle imaging,” an optical sensing technique that measures the differences in how laser light bounces off the membranes of healthy and infected red blood cells and may make diagnosing malaria easier, faster, and more accurate.
In a paper published in the Optical Society’s (OSA) open-access journal Biomedical Optics Express, researchers explain that by comparing the apparently random scattering (speckling) of light as it builds up from multiple images, a clear statistical pattern emerges that identifies cells that harbor the parasite responsible for malaria. The team presents its preliminary results involving 25 cell samples (12 healthy, 13 infected) in the paper.
The specific technique the researchers used is called secondary speckle sensing microscopy. By applying this imaging technique to an automated high-throughput system, the researchers were able to deliver results in as little as 30 min. They did so with a high rate of accuracy and without the need for highly trained technicians and a well-equipped hospital laboratory. The current time for diagnosis in most African medical centers is typically between 8-10 h.
“A new diagnostic tool is urgently needed,” said Dan Cojoc, lead author of the study and a researcher at the Materials Technology Institute, National Research Council (Trieste, Italy). “With a fast, portable, low-cost, and accurate diagnostic tool, physicians can confidently and quickly administer the correct therapy.”
According to the researchers, this timely diagnosis maximizes the likelihood of successful, life-saving treatment. It also minimizes the chances that inappropriate therapy will be given, which would help combat the growing problem of drug resistant malaria.
Malaria is most common in warm, wet climates where mosquitos thrive. It claims nearly one million lives a year, mostly of African children.
New Fluorescence Model Enhances Aflatoxin Detection in Vegetable Oils
March 12th 2025A research team from Nanjing University of Finance and Economics has developed a new analytical model using fluorescence spectroscopy and neural networks to improve the detection of aflatoxin B1 (AFB1) in vegetable oils. The model effectively restores AFB1’s intrinsic fluorescence by accounting for absorption and scattering interferences from oil matrices, enhancing the accuracy and efficiency for food safety testing.
New Study Shows FT-MIR Spectroscopy Can Authenticate Parmigiano Reggiano Farming Practices
March 11th 2025A new study published in the Journal of Dairy Science demonstrates that FT-MIR spectroscopy can effectively authenticate farming practices and dairy systems in Parmigiano Reggiano production but has limited ability to verify animal welfare parameters.
Advancing NIR and Imaging Spectroscopy in Food and Bioanalysis
March 11th 2025Our full-length interview with Huck covers more than just NIR spectroscopy in food and bio analysis. Spectroscopy sat down with Huck to also discuss current trends going on in spectroscopy, delving into what challenges spectroscopists face today and how they can solve these concerns.
The State of Forensic Science: Previewing an Upcoming AAFS Video Series
March 10th 2025Here, we provide a preview of our upcoming multi-day video series that will focus on recapping the American Academy of Forensic Sciences Conference, as well as documenting the current state of the forensic science industry.