In a new study, scientists at the University of Warwick (Coventry, UK) present the results of the analysis of petroleum and protein samples to demonstrate the applicability of the absorption-mode in Fourier Transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to routine experiments.
In a new study, scientists at the University of Warwick (Coventry, UK) present the results of the analysis of petroleum and protein samples to demonstrate the applicability of the absorption-mode in Fourier Transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to routine experiments.
The new study follows two papers published last year by the same team, led by Professor Peter B. O’Conner. Those papers explained that the resolving power of FT-ICR-MS could be enhanced up to a factor of two by phasing the raw data accurately and plotting them in the pure absorption mode, which had been a long-standing problem for almost 40 years.
Through the analysis of crude oil and top-down protein spectra, the new study provides empirical evidence confirming that the absorption mode, in addition to improving the resolving power compared to the conventional magnitude mode, improves the signal-to-noise ratio of a spectrum by 1.4-fold and can improve the mass accuracy up to 2-fold, throughout the entire m/z range, without any additional cost in instrumentation.
The paper, “Absorption-Mode: The Next Generation of Fourier-Transform Mass Spectra,” was published on February 17 in the journal Analytical Chemistry.
Improving Fluorescence and Raman Techniques for Environmental Microplastic Analysis
March 31st 2025A recent study conducted at the LaserLaB Amsterdam and Vrije Universiteit Amsterdam (the Netherlands) explored spectroscopic imaging techniques, including Raman and fluorescence microscopy, for characterizing microplastics (MPs), focusing on optimizing sample preparation, particularly density separation, and Nile Red staining.Spectroscopy spoke to Merel Konings, corresponding author of the paper resulting from the study, about her work
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.