In a new study, scientists at the University of Warwick (Coventry, UK) present the results of the analysis of petroleum and protein samples to demonstrate the applicability of the absorption-mode in Fourier Transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to routine experiments.
In a new study, scientists at the University of Warwick (Coventry, UK) present the results of the analysis of petroleum and protein samples to demonstrate the applicability of the absorption-mode in Fourier Transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to routine experiments.
The new study follows two papers published last year by the same team, led by Professor Peter B. O’Conner. Those papers explained that the resolving power of FT-ICR-MS could be enhanced up to a factor of two by phasing the raw data accurately and plotting them in the pure absorption mode, which had been a long-standing problem for almost 40 years.
Through the analysis of crude oil and top-down protein spectra, the new study provides empirical evidence confirming that the absorption mode, in addition to improving the resolving power compared to the conventional magnitude mode, improves the signal-to-noise ratio of a spectrum by 1.4-fold and can improve the mass accuracy up to 2-fold, throughout the entire m/z range, without any additional cost in instrumentation.
The paper, “Absorption-Mode: The Next Generation of Fourier-Transform Mass Spectra,” was published on February 17 in the journal Analytical Chemistry.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.