Researchers at the National Institute of Standards and Technology (NIST, Gaithersburg, Maryland) have developed a highly sensitive, low-cost NIR spectroscopy technique that can measure the specific wavelengths used in telecommunications as well as single-photon levels of infrared light given off by fragile biomaterials and nanomaterials.
Researchers at the National Institute of Standards and Technology (NIST, Gaithersburg, Maryland) have developed a highly sensitive, low-cost NIR spectroscopy technique that can measure the specific wavelengths used in telecommunications as well as single-photon levels of infrared light given off by fragile biomaterials and nanomaterials. The approach “up converts” infrared photons up to the visible range using a tunable laser. The narrow-band pump laser scans the infrared signal photons and converts only those that have the desired polarization and wavelength to visible light. The visible light is easily detected by commercially available avalanche photodiode detectors. The new system reportedly enables spectra to be measured with a sensitivity that is greater than 1000 times that of current commercial optical spectral instruments.
New SERS-Microfluidic Platform Classifies Leukemia Using Machine Learning
January 14th 2025A combination of surface-enhanced Raman spectroscopy (SERS) and machine learning on microfluidic chips has achieved an impressive 98.6% accuracy in classifying leukemia cell subtypes, offering a fast, highly sensitive tool for clinical diagnosis.
Advancing Soil Carbon Analysis Post-Wildfire with Spectroscopy and Machine Learning
January 14th 2025Researchers from the University of Oviedo used diffuse reflectance spectroscopy (DRS) and machine learning (ML) to analyze post-wildfire soil organic carbon fractions, identifying key spectral regions and algorithms for advancing remote sensing applications.
Oligonucleotide Analysis in Pharmaceutical Quality Control
January 14th 2025Melting point determination using ultraviolet-visible (UV-Vis) spectrophotometry can be used as a sequence-specific method for identifying therapeutic oligonucleotides in pharmaceutical quality control. This method offers a simple, highly selective approach to differentiate between isomers and ensure the integrity of oligonucleotide active pharmaceutical ingredients (APIs) and drug products.
The Optical Properties of Solid Samples
January 14th 2025Transmittance and reflectance measurements, which are useful for estimating the effects of various physical processes, can include thermal treatments, ionizing radiation exposure, optical exposure, and mechanical treatments—on both crystals and thin films.