On January 30, 2024, Chengjie Xi of the University of Florida gave a lecture at SPIE Photonics West in San Francisco, California, on how terahertz time-domain spectroscopy (THz-TDS) can be used to detect changes in integrated-circuit (IC) packaging materials (1). The lecture, showed how using THz-TDS can help the monitoring process under various conditions, allowing for insights into counterfeit IC detection.
The presentation began with Xi discussing the status of IC packaging, with each iteration being put through different means of inspection to reduce costs and enhance effectiveness. Wafer foundries and assembly testing usually happens in packaging facilities all over the world, which, according to Xi, creates opportunities for malicious vendors or individuals to negatively affect original designs through practices like implementing unwanted features, resulting in significant hardware insurance challenges. He also pointed out how supply chain vulnerabilities can extend to advanced packaging, so it is important to spend effort on assurance and detecting errors or changes in IC packaging materials.
Xi went on to explain why electromagnetic compatibility (EMC) usage for IC packaging is a better alternative. It is already used in different types of IC packaging and has been found to have multiple applications. For quad flat package (QFP) and dual in-line package (DIP) circuits, it serves as an encapsulant, meaning it helps “protect electronic components from detrimental chemical, mechanical, electrical or thermal environments” (2). Additionally, it can also be useful as underfill material, which “protects electronic products from shock, drop, and vibration and reduces the strain on fragile solder connection” (3). It can act as an underfill between two different chiplets, a chiplet and a package substrate, or a chiplet and an interposer. EMC material properties can also vary in multiple ways, such as material composition, fabrication process, and how they deal with thermal aging and moisture effects. Materials and processes can vary, with the former category including epoxy resin, hardener, and filler, and the latter including different stages of the curing process. With so many different factors at play, scientists must take note on what environmental factors can affect EMC materials, and how.
One factor that can affect EMCs is the surrounding temperature. Most EMC materials are designed to work around 150 °C, though they usually work temperatures under 200 °C. Beyond that, higher temperatures can cause oxidation within EMC components, in addition to cracks, shrinkage, aging speed increase, and internal stress, among other issues. Moisture can also be an issue. Different EMC have different water uptake percentages, and the more time spent in water, the less mechanically strong the components become. There are different ways to characterize EMC components, some destructive, like DSC (measures the hardness of packaging polymers) and DMA (measures the storage), and some nondestructive methods, like X-ray or Fourier transform infrared spectroscopy (FT-IR), that characterize either the structure or materials, respectively. It is difficult to simultaneously characterize both EMC materials and structure.
With THz-TDS, Xi said this solves multiple issues with EMC characterization. It can measure thickness, defection levels, and delamination at the same time, while THz-TDS images can better capture internal components. From his research, he sees that THz-TDS can simultaneously characterize EMC structures and materials, addressing multiple issues without need for interference. Referencing a case study, his team used THz-TDS for thermal loading characterization, specifically on an aging furnace that was used for 4 hours at 200 °C. In this instance, the images and data were able to capture THz-TDS amplitude and phase changes in different locations.
EMC materials can be difficult to characterize, but Xi said there is potential in using THz-TDS in this regard. With its versatility and recorded capabilities in different analysis conditions, he said it can help streamline analysis and prevent malicious interference from outside sources. There is further research to conduct in this regard, but THz-TDS can help better the IC packaging process as we know it.
(1) Xi, C.; Varshney, N.; Khan, M. S. M.; Dalir, H.; Asadizanjani, N. THz-TDS for IC packaging material changes detection under real-world conditions. In SPIE Photonics West, San Francisco, California, USA, January 30–31, 2024.
(2) Encapsulant. ScienceDirect 2012.https://www.sciencedirect.com/topics/chemistry/encapsulant (accessed 2023-1-30)
(3) What is Underfill? Nordson Corporation 2024. https://www.nordson.com/en/divisions/electronics-solutions/your-process/fluid-types/underfill (accessed 2023-1-30)
Best of the Week: AI and IoT for Pollution Monitoring, High Speed Laser MS
April 25th 2025Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.
Smarter Sensors, Cleaner Earth Using AI and IoT for Pollution Monitoring
April 22nd 2025A global research team has detailed how smart sensors, artificial intelligence (AI), machine learning, and Internet of Things (IoT) technologies are transforming the detection and management of environmental pollutants. Their comprehensive review highlights how spectroscopy and sensor networks are now key tools in real-time pollution tracking.
New AI Strategy for Mycotoxin Detection in Cereal Grains
April 21st 2025Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.