At Pittcon, Spectroscopy sat down with Christian Huck of the University of Innsbruck to talk about how NIR and imaging spectroscopy are being used in food and bioanalysis, and where this industry is heading in the future.
At Pittcon 2025 this year, which took place in Boston, Massachusetts, attendees and separation science professionals gathered at the Boston Conference & Exposition Center to learn and discuss the latest trends in laboratory science. Although most of the technical program revolved around the latest developments in chromatography, there was an important oral session on vibrational spectroscopy that took place on Sunday, March 2nd, from 9:30 am to 12:00 pm.
Christian Huck, a professor at the University of Innsbruck in Austria, delivered a talk during this session titled, “The Near-Infrared and Imaging Spectroscopy in Food and Bioanalysis: Current and Future Directions” (1,2). In his talk, Huck highlighted how molecular vibrational spectroscopy is advancing rapidly in food and bioanalysis, offering fast, non-invasive screening of chemical and physical properties (1).
Although traditional separation and mass spectrometric (MS) techniques provide high selectivity and sensitivity, vibrational spectroscopy benefits from rapid analysis and simultaneous property assessment (1). Chemometric methods, including univariate and multivariate data treatment, improve spectral interpretation and calibration (1).
Huck also highlighted some of the key spectroscopic techniques that have been used for qualitative and quantitative analysis. These techniques include near-infrared (NIR), attenuated total reflection (ATR) infrared, and Raman spectroscopy (1). Huck discussed how these techniques have improved species identification and chemical parameter assessment (1). Huck also discussed the utility of two-dimensional correlation spectroscopy (2D-COS), and how it has helped improve the monitoring of spectrometer dynamics, while miniaturized spectrometers allow for on-site investigations (1). Imaging and mapping techniques further enabled high-resolution analysis, detecting potent food ingredients at spatial resolution down to 1–4 µm (1).
Huck’s talk focused on the most recent advances in molecular spectroscopy, including all the latest technical developments. His talk examined the advantages and limitations of molecular spectroscopy, comparing them to other traditional techniques (1). Huck then concluded his talk by addressing future trends, such as enhanced spectral interpretation and improved analytical capabilities (1).
Spectroscopy sat down with Huck to talk about how NIR and imaging spectroscopy are being used in food and bioanalysis, and where this industry is heading in the future.
Smart Farming Using AI, IoT, and Remote Sensing
March 4th 2025A study by researchers at Universidad de Talca in Chile explores the integration of artificial intelligence (AI), the Internet of Things (IoT), and remote sensing to modernize modern farming. The research highlights how these technologies optimize resource use, improve crop yields, and promote sustainable agricultural practices.
Transforming Connectivity with a Comprehensive Review of IoT Sensors
March 3rd 2025A recent review by researchers at Nagpur University and Seth Kesarimal Porwal College explores the ever advancing landscape of the Internet of Things (IoT) and its essential components—sensors and actuators. The review paper classifies various IoT sensors and examines their role in integrating the physical and digital worlds to enable smarter devices and enhanced automation.
Pittcon 2025: Keynote Coulter Lecture Highlights Work in Regenerative Engineering
March 3rd 2025Yesterday, at 5:00 pm in Ballroom East, the Wallace H. Coulter Lecture took place, and it was delivered by Cato T. Laurencin, MD, PhD, who is well-known as a scientist and entrepreneur with an extensive career in regenerative engineering. His lecture highlighted the work he and his team has done in this space.