Scientists compared a portable infrared attenuated total reflection spectrometer (ATR) to a conventional ATR Fourier transform infrared (ATR FT-IR) system.
Researchers from the Institute of Analytical and Bioanalytical Chemistry at Ulm University in Germany recently published a study comparing the use of a portable and compact infrared (IR) attenuated total reflection spectrometer (ATR) to a conventional ATR Fourier transform infrared (ATR FT-IR) system.
The portable infrared attenuated total reflection (IR-ATR) device operates on a compact modular system structure that combines a microelectromechanical (MEMS) thermal light source, a pyroelectric linear array detector (PLAD), and a linear variable filter (LVF) for precise IR wavelength discrimination. This portable instrument configuration allows the device to selectively analyze specific wavelengths of infrared light. The pyroelectric linear array detector captures the incident infrared radiation, while the liquid crystal variable filter enables the device to isolate and target particular wavelengths for analysis. This modular approach enhances the device's versatility and accuracy in conducting spectroscopic analyses, making it a useful spectrometer.
The scientists, who published their findings in the Applied Spectroscopy, reviewed the effectiveness of this portable system at analyzing food samples (1). The study found that the portable spectrometer could be an effective tool for the detection of mycotoxins, the analysis of fatty acids (FAs), and organic solvents.
“Of particular interest is the fact that the comparison of compact ATR devices with conventional ATR FT-IR spectrometers yields similar analytical performance characteristics, which facilitates a multitier analytical concept combining medium-resolution in-field data with high-resolution laboratory data, as recently proposed by the European Union project PHTONFOOD (No. 101016444),” the scientists wrote in the study.
Using a compact or portable spectrometers could better allow scientists to perform analysis in the field to help ensure the quality and safety of food. There were some differences between the portable spectrometer and the Fourier transform IR device, however the scientists concluded it was not overall detrimental to the data.
“It is anticipated that appropriately adapted multivariate data evaluation schemes considering limitations such as the nonconstant spectral resolution will further advance the utility of these devices in industrial monitoring and quality control scenarios,” they wrote.
Future studies, they said, should aim to analyze more complex samples including real fish and extracts from cereals containing fungal contaminants.
Reference
New Study Shows FT-MIR Spectroscopy Can Authenticate Parmigiano Reggiano Farming Practices
March 11th 2025A new study published in the Journal of Dairy Science demonstrates that FT-MIR spectroscopy can effectively authenticate farming practices and dairy systems in Parmigiano Reggiano production but has limited ability to verify animal welfare parameters.
Advancing NIR and Imaging Spectroscopy in Food and Bioanalysis
March 11th 2025Our full-length interview with Huck covers more than just NIR spectroscopy in food and bio analysis. Spectroscopy sat down with Huck to also discuss current trends going on in spectroscopy, delving into what challenges spectroscopists face today and how they can solve these concerns.
Pittcon 2025: Christian Huck Discusses Near-Infrared Spectroscopy in Food Analysis
March 6th 2025At Pittcon, Spectroscopy sat down with Christian Huck of the University of Innsbruck to talk about how NIR and imaging spectroscopy are being used in food and bioanalysis, and where this industry is heading in the future.
AI-Powered Detection System Identifies Petroleum Contamination in Edible Oils
March 3rd 2025Researchers from Jiangsu University and Jimei University have developed an AI-powered detection system using near-infrared spectroscopy and a convolutional neural network long short-term memory (CNN-LSTM) model to accurately identify petroleum contamination in edible oils for improving food safety and quality control.