Spectroscopy recently sat down with Elise Granek, Susanne Brander, and Summer Traylor to discuss their recent study quantifying microplastics (MPs) and anthropogenic particles (APs) in the edible tissues of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp.
Microplastics and anthropogenic particles are ubiquitous in the environment. The presence of these contaminants can pose challenges to ecosystems and the creatures that live there. A recent study published in Frontiers in Toxicology explored this topic, focusing specifically on marine and aquatic environments (1). This study was conducted by Elise Granek, Susanne Brander, Summer Traylor, and Marilyn Duncan. Recently, three of the authors sat down with Spectroscopy to discuss their research.
The team quantified anthropogenic particles (APs) in the edible tissues of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp, comparing contamination across trophic levels and between vessel-retrieved and retail-purchased samples.
The lead investigator of the overarching project, Elise Granek, is a Professor at Portland State University. She earned her Ph.D. in Zoology/Marine Ecology from Oregon State University and her MESc in Forest Ecology from Yale University (2). She runs the Applied Coastal Ecology Lab, and her research group examines the effects of emerging contaminants on marine ecosystems and species (2). Granek also serves on the Scientific and Technical Advisory Committee to Oregon's Ocean Policy Advisory Committee, on the Steering Committee for Oregon’s Coastal and Ocean Information Network, as an Associate Editor of Limnology and Oceanography Letters, as a member of the Pacific Northwest Consortium on Plastics, and teaches courses on coastal ecology, environmental contaminants, and science communication (2).
Susanne Brander is an Associate Professor at Oregon State University. She earned her MS in Environmental Science and Policy from Johns Hopkins University in Baltimore, Maryland, and her Ph.D. in Toxicology from University of California, Davis (3). Her group integrates the responses of organisms to micro and nanoplastics, microfibers, and other environmental stressors across the biological hierarchy (3). She co-leads the Pacific Northwest Consortium on Plastics, serves on microplastics working groups for the State of California, and is currently a member of the steering committee for the Scientists Coalition for an Effective Plastics Treaty, which is under ongoing negotiations at the United Nations Environment Programme.
Summer Traylor serves as a National Oceanic and Atmospheric Administration (NOAA) Corps Officer for the National Oceanic and Atmospheric Administration aboard NOAA Ship Gordon Gunter, an oceanographic research vessel. NOAA Ship Gordon Gunter conducts marine mammal surveys and collects plankton and microplastic abundance data. Traylor earned her bachelor's degree in environmental science from University of California, Santa Cruz and her Masters of Environmental Science and Management from Portland State University.
In this interview, Granek, Brander, and Traylor address the following questions:
Real-Time Battery Health Tracking Using Fiber-Optic Sensors
April 9th 2025A new study by researchers from Palo Alto Research Center (PARC, a Xerox Company) and LG Chem Power presents a novel method for real-time battery monitoring using embedded fiber-optic sensors. This approach enhances state-of-charge (SOC) and state-of-health (SOH) estimations, potentially improving the efficiency and lifespan of lithium-ion batteries in electric vehicles (xEVs).
New Study Provides Insights into Chiral Smectic Phases
March 31st 2025Researchers from the Institute of Nuclear Physics Polish Academy of Sciences have unveiled new insights into the molecular arrangement of the 7HH6 compound’s smectic phases using X-ray diffraction (XRD) and infrared (IR) spectroscopy.
Microplastics Widespread on Catalan Beaches, Study Finds
March 28th 2025In a recent study published in Marine Pollution Bulletin, a team of researchers from several Spain and Portugal universities and institutions (Rovira i Virgili University, Universitat de Barcelona, University of Porto, and Institut d'Investigació Sanitaria Pere Virgili (IISPV) assessed microplastic (MP) contamination along the Mediterranean coastline.