An in situ high-temperature Raman scattering study of monoclinic m-Ag2Mo2O7 microrods reveals an irreversible first-order structural phase transition and melting process, according to new research.
Researchers at Universidade Federal do Maranhão in São Luís, Brazil, have conducted an in situ high-temperature Raman scattering study of monoclinic silver dimolybdate (m-Ag2Mo2O7) microrods. The study, published in the Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal, explored the temperature-dependent behavior of the m-Ag2Mo2O7 microrods and found an irreversible first-order structural phase transition at 698 K–723 K and a melting process at 773 K (1).
The researchers obtained the m-Ag2Mo2O7 microrods by using the conventional hydrothermal method at 423 K for 24 h. Then, they conducted structural and morphological characterization of the sample using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The Raman scattering measurements were performed on m-Ag2Mo2O7 microrods to determine the phase transition, and doing so revealed changes in the Raman spectra, confirming the transition from the P21/c monoclinic structure to the P-1 triclinic structure.
Monoclinic silver dimolybdate (m-Ag2Mo2O7) microrods have potential applications in various fields, such as catalysis, electrochemistry, and gas sensing. The study of their structural and morphological properties, as well as their temperature-dependent behavior, is important for understanding their potential applications and for developing new ones. The in situ high-temperature Raman scattering study of m-Ag2Mo2O7 microrods presented in the article provides valuable insights into their phase transition behavior and melting process, which can inform future research on this subject.
Interestingly, no morphological changes were observed during the structural phase transition of the sample at 723 K. However, time-dependent optical microscopy at 773 K showed the growth of nanowires on the Ag2Mo2O7 microrods in the triclinic structure. This study provides significant insights into the temperature-dependent behavior of m-Ag2Mo2O7 microrods and their potential use in high-temperature applications.
This paper, with lead author J.V.B. Moura, indicated that Raman spectra provide important insights into the high-temperature phase transition behavior of m-Ag2Mo2O7 microrods, which is essential for their practical applications in various fields. This study could lead to further research on the phase transition behavior of other materials and could potentially open up new avenues for their use in high-temperature applications.
Overall, this study highlights the importance of understanding the temperature-dependent behavior of materials and their potential for practical applications. The findings of this study could have significant implications in various fields, such as materials science, chemistry, and physics.
(1) Ferreira, A. N. C.; Ferreira, W. C.; Duarte, A. V.; Santos, C. C.; Freire, P. T. C.; Luz-Lima, C.; Moura, J. V. B. In situ high‐temperature Raman scattering study of monoclinic Ag2Mo2O7 microrods. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2023, 295, 122632. DOI: 10.1016/j.saa.2023.122632
Remembering Engineering Pioneer Sir David McMurtry
December 16th 2024The world of engineering and innovation mourns the loss of a towering figure with the passing of Sir David McMurtry, CBE, RDI, FREng, FRS, CEng, FIMechE, co-founder and Non-Executive Director of Renishaw. Known for his brilliance, humility, and groundbreaking contributions to metrology and manufacturing, McMurtry leaves a legacy that has profoundly shaped modern engineering.
Raman Spectroscopy and Deep Learning Enhances Blended Vegetable Oil Authentication
December 10th 2024Researchers at Yanshan University have developed a groundbreaking method combining Raman spectroscopy and deep learning models to accurately identify and quantify components in blended vegetable oils.
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
Microplastics in the Desert: A Growing Concern in Phoenix Soils
December 6th 2024A recent study reveals widespread and increasing microplastic contamination in the soils of Phoenix and the Sonoran Desert, highlighting significant environmental concerns and the need for further research into their sources and impacts.
Portable and Wearable Spectrometers in Our Future
December 3rd 2024The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.