A new study published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy focuses on investigating the interaction between Perfluorobutanesulfonyl fluoride (PBSF) and bovine serum albumin (BSA) using various analytical techniques (1). PBSF, commonly used in the production of fluorochemicals, is of environmental concern due to its non-biodegradable nature and increasing levels in humans. The research aims to understand the binding mechanism between PBSF and BSA, shedding light on potential toxicity mechanisms (1).
The researchers employed multiple spectroscopic methods such as fluorescence spectroscopy, UV–vis spectroscopy, circular dichroism spectroscopy, and synchronous fluorescence spectroscopy to analyze the interaction. The results indicated that PBSF forms a complex with BSA, resulting in fluorescence quenching through a static quenching mechanism. The thermodynamic parameters calculated for the interaction suggested spontaneity, with hydrogen bonds and van der Waals forces playing a significant role in the binding.
Synchronous fluorescence spectra revealed changes in the microenvironment surrounding tyrosine and tryptophan residues in BSA after the addition of PBSF. Fluorescence resonance energy transfer (FRET) analysis provided evidence for static quenching and the possibility of energy transfer from BSA to PBSF (1). Molecular dynamics (MD) simulations further validated the experimental findings.
The findings highlight the strong binding between PBSF and BSA, elucidating the interaction mechanisms through a combination of experimental and theoretical approaches. The study not only confirms the complex formation between PBSF and BSA, but also provides insights into the alterations in the microenvironment of BSA residues.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
Reference
(1) Jin, X.; Xu, Z.; Zhang, M.; Jia, W.; Xie, D. Potential Toxic Effects of Perfluorobutanesulfonyl Fluoride Analysis Based on Multiple-Spectroscopy Techniques and Molecular Modelling Analysis. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc. 2024, 308, 123677. DOI: 10.1016/j.saa.2023.123677
Spectroscopy and GPC to Evaluate Dissolved Organic Matter
February 4th 2025In a new study, a team of scientists used gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-visible spectroscopy to assess road runoff from drinking water treatment plants to evaluate the method' capacity for removing dissolved organic matter (DOM).
The Essentials of Analytical Spectroscopy: Theory and Applications
January 23rd 2025This excerpt from The Concise Handbook of Analytical Spectroscopy, which spans five volumes, serves as a comprehensive reference, detailing the theory, instrumentation, sampling methods, experimental design, and data analysis techniques for each spectroscopic region.
New Spectroscopy Method Shows Promise for Detecting Olive Oil Fraud
November 12th 2024Researchers from the University of Cordoba have validated a novel spectroscopy technique to help distinguish between extra virgin and virgin olive oils. This approach could support existing panel-based tests, which are often slow, costly, and subjective, by providing a faster, non-destructive screening option.