A surface-enhanced Raman spectroscopy (SERS) assay that was designed to detect Bacillus anthracis spores was used to selectively bind B. anthracis with a 100-fold selectivity versus B. cereus and to detect B. anthracis Ames at concentrations of 1000 spores per mL within 15 minutes. The assay consisted of silver nanoparticles embedded in a porous glass structure functionalized with peptides distributed throughout a porous glass structure so that sample and reagents can easily flow through.
In a paper titled “Selective detection of 1000 B. anthracis spores within 15 minutes using a peptide functionalized SERS assay,” published in the December issue of Analyst, researchers determined that the SERS assay measurements provide a basis for the development of systems that can detect spores collected from the air or from water supplies.
In their paper, authors Stuart Farquharson, Chetan Shende, Wayne Smith, Hermes Huang, Frank Inscore, Atanu Sengupta, Jay Sperry, Todd Sickler, Amber Prugh, and Jason Guicheteau note that “since the distribution of B. anthracis Ames spores through the US Postal System in 2001, there has been substantial effort to develop technologies that can detect this bioweapon as part of an early warning system.” They conclude that the sensitivity of their SERS assay suggests that an early warning system capable of detecting the required 104B anthracis Ames spores per m3 in ~ 10 minutes could be developed. They note that similar peptide-based SERS assays could be developed for food and waterborne pathogens, provided that the selective peptides and appropriate biomarkers are available.
Best of the Week: EAS Conference Coverage, IR Spectroscopy, Microplastics
November 22nd 2024Top articles published this week include highlights from the Eastern Analytical Symposium, a news article about the infrared (IR) spectroscopy market, and a couple of news articles recapping spectroscopic analysis of microplastics.
FT-IR Analysis of pH and Xylitol Driven Conformational Changes of Ovalbumin–Amide VI Band Study
November 21st 2024This study uses Fourier transform infrared (FT-IR) spectroscopy to analyze how the globular protein ovalbumin's secondary structures transition under varying pH conditions in the presence of the cosolvent xylitol, highlighting the role of noncovalent interactions in these conformational changes.