Researchers describe a new method for the ultra-trace determination of mercury in seawater using vortex-assisted liquid-liquid micro-extraction (VALLME) and atomic absorption spectrometry (AAS).
Researchers at the University of Coruña in Coruña, Spain have developed a new analytical methodology for the detection of ultra-trace levels of mercury in seawater. The research, published in the Spectrochimica Acta Part B: Atomic Spectroscopy journal, describes a technique based on a vortex-assisted liquid-liquid micro-extraction (VALLME) for the extraction and enrichment of total mercury from seawater (1).
The method involves the derivatization of mercury with ammonium pyrrolidine dithiocarbamate (APDC) and quantification by atomic absorption spectrometry (AAS) using a Direct Mercury Analyzer DMA-80 spectrometer based on thermal desorption. The researchers explored various variables affecting mercury derivatization and VALLME extraction, including pH, APDC concentration, extraction (vortex) time, acceptor solvent (hexane) volume, and ionic strength of the donor phase.
VALLME is a sample preparation technique used to extract and enrich total mercury from seawater. The technique involves the addition of ammonium pyrrolidine dithiocarbamate (APDC) to the seawater sample to form a complex with mercury ions. This complex is then extracted into a small volume of organic solvent (hexane) through vigorous vortexing. After separation, the organic phase is collected and analyzed for mercury content using atomic absorption spectrometry (AAS). The VALLME method is highly sensitive, precise, and capable of extracting mercury at ultra-trace levels from seawater samples.
The researchers achieved an enrichment factor (EF) and extraction recovery (ER) of 51 and 76 ± 5.3%, respectively, from just 20 mL of seawater (at pH = 3) using an APDC concentration of 0.125 mmol/L, vortex time and acceptor solution volume of 4 min and 300 μL, respectively. NaCl addition had no effect on mercury determination. The VALLME-AAS method was highly sensitive, with a quantification limit (QL) of 10.3 ng/L, with relative standard deviations (RSDs) of less than 14%.
The developed procedure was tested by analyzing different sea water (NASS-7) and estuarine water (SLEW-3 and BCR-505) certified reference materials. Finally, mercury levels between 34–172 ng/L were assessed in several seawater samples.
This new method provides a more sensitive and precise way of detecting ultra-trace levels of mercury in seawater. According to Jorge Moreda-Piñeiro, the main author of the study, this method could be useful in monitoring the presence of mercury in the marine environment, as well as in assessing the impact of human activities on the marine ecosystem (1).
(1) Conchado-Amado, P.; Sánchez-Piñero, J.; Turnes-Carou, I.; López-Mahía, P.;Muniategui-Lorenzo, S. Ultra-trace mercury determination in seawater after vortex-assisted liquid-liquid micro-extraction. Spectrochim. Acta Part B At. Spectrosc. 2023, ASAP. DOI: 10.1016/j.sab.2023.106683
Advancing Soil Carbon Analysis Post-Wildfire with Spectroscopy and Machine Learning
January 14th 2025Researchers from the University of Oviedo used diffuse reflectance spectroscopy (DRS) and machine learning (ML) to analyze post-wildfire soil organic carbon fractions, identifying key spectral regions and algorithms for advancing remote sensing applications.
Trending on Spectroscopy: The Top Content of 2024
December 30th 2024In 2024, we launched multiple content series, covered major conferences, presented two awards, and continued our monthly Analytically Speaking episodes. Below, you'll find a selection of the most popular content from Spectroscopy over the past year.
FT-IR Spectroscopy for Microplastic Classification
December 19th 2024A new study in Infrared Physics & Technology highlights the pivotal role of Fourier transform infrared (FTIR) spectroscopy in identifying and quantifying microplastics, emphasizing its advantages, limitations, and potential for advancement in mitigating environmental pollution.
Measuring Microplastics in Remote and Pristine Environments
December 12th 2024Aleksandra "Sasha" Karapetrova and Win Cowger discuss their research using µ-FTIR spectroscopy and Open Specy software to investigate microplastic deposits in remote snow areas, shedding light on the long-range transport of microplastics.
Microplastics in the Desert: A Growing Concern in Phoenix Soils
December 6th 2024A recent study reveals widespread and increasing microplastic contamination in the soils of Phoenix and the Sonoran Desert, highlighting significant environmental concerns and the need for further research into their sources and impacts.