This study describes how Raman imaging and correlative Raman scanning electron (RISE) microscopy can characterize and visualize layer numbers in 2D MoS2 and WSe2 samples.
Transition metal dichalcogenides (TMDs) exhibit unique electronic and optical properties, and these differ depending on the number of layers of material. Raman imaging can quantify layers by these differences. Raman microscopy can also be combined with other techniques, such as scanning electron microscopy, for a more comprehensive view.
Experimental
An investigation of a tungsten diselenide flake quickly produced high-resolution images with a WITec alpha300 apyron fully automated Raman microscope.
Molybdenum disulfide monolayer crystals were examined with a WITec RISE system featuring a common vacuum chamber for both Raman and SEM measurements.
Results
Ultrafast Raman Analysis of Tungsten Diselenide (WSe2)
Figure 1B shows a measurement of a WSe2 flake that was acquired in approximately 2 min. It is a clear and detailed 75 × 75 µm² Raman image consisting of 10,000 spectra. The same data after smoothing are also shown. A measurement made in about 17 min of 100,000 spectra produced an even sharper image.
RISE Microscopy Investigation of Molybdenum Disulfide (MoS2)
RISE microscopy reveals structure as well as crystalline and exciton dynamics of few-layered transition metal dichalcogenides (TMDs). Twin crystals of MoS2 on SiO2/Si appear in the SEM image as star-shaped forms (Figure 2A). The Raman spectra of MoS2 monolayers show the characteristic E’/E2g and A’1/A1g Raman band modes of MoS2 at 385 and 403 relative wavenumbers (cm-1) respectively (Figure 2C). With an increasing number of layers, the two Raman bands drift apart due to in-plane and out-of-plane (inter-layer) vibrations.
The grain boundaries visible in the SEM image correlate with the areas where Raman signals indicate crumpled or overlapping edges, highlighting the effectiveness of RISE microscopy (Figure 2B) for characterizing MoS2 crystals.
Conclusion
Raman microscopy and the combination of Raman imaging with scanning electron microscopy offer researchers fast and versatile tools for determining the number of layers in transition metal dichalcogenide samples. High-resolution images of tungsten diselenide and molybdenum disulfide crystals can show edges, boundaries, folds, wrinkles, and other structures in clear, precise detail. This capability will be of great use as 2D materials and TMD research continues.
WITec GmbH
Lise-Meitner-Str. 6, 89081 Ulm, Germany
tel. +49 731 140 70 0, fax +49 731 140 70 200
Website: www.witec.de
Measuring Soil Potassium with Near-Infrared Spectroscopy
January 8th 2025Researchers have developed a novel three-step hybrid variable selection strategy, SiPLS-RF(VIM)-IMIV, to enhance the accuracy and efficiency of soil potassium measurement using near-infrared spectroscopy, offering significant advancements for precision agriculture and real-time soil monitoring.
Raman Microscopy for Characterizing Defects in SiC
January 2nd 2025Because there is a different Raman signature for each of the polymorphs as well as the contaminants, Raman microscopy is an ideal tool for analyzing the structure of these materials as well as identifying possible contaminants that would also interfere with performance.