Using principal component analysis, FOSS Analytical has shown that it is possible to use IR spectroscopy to analyze raw milk before it reaches supermarket shelves.
Natural raw milk has a unique "fingerprint"--a particular spectrum that identifies it as pure, raw milk. Through the use of infrared (IR) spectroscopy, scientists can detect whether a milk sample is contaminated long before it reaches supermarket shelves as either milk products or powdered milk. Using the devices developed by FOSS, if the spectrum from the sample being tested does not match the known spectrum for milk, the instrument will give a warning immediately.
According to Torben Ladegaard, chief operating officer for FOSS (Hillerød, Denmark), "In the world's food production sector, it's crucial to have systems capable of identifying authentic raw materials to ensure that food quality and safety requirements are met."
The main advantages of IR spectroscopy are its speed, good resolution, cost-effectiveness, and the fact that it is a nondestructive technique. There is the potential for this technique to be used to analyze a wide range of compounds, which can be very helpful in the area of worldwide food safety.
The Essentials of Analytical Spectroscopy: Theory and Applications
January 23rd 2025This excerpt from The Concise Handbook of Analytical Spectroscopy, which spans five volumes, serves as a comprehensive reference, detailing the theory, instrumentation, sampling methods, experimental design, and data analysis techniques for each spectroscopic region.
New Advances in Meat Authentication: Spectral Analysis Unlocks Insights into Lamb Diets
January 22nd 2025A recent study published in Meat Science highlighted how visible and near-infrared (vis-NIR) spectroscopy, when combined with chemometrics, can differentiate lamb meat based on pasture-finishing durations.
Recent Study Analyzes Microplastics in Seafood on the U.S. West Coast
January 22nd 2025A recent study examines widespread microplastic contamination in key Oregon seafood species, emphasizing the need for coordinated local and global efforts to reduce plastic pollution and protect ecosystems, public health, and cultural traditions.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.