A recent study examined how surface-enhanced Raman spectroscopy (SERS) can characterize parallel double-stranded DNA (dsDNA).
Characterizing parallel double-stranded DNA (dsDNA) is possible by using surface-enhanced Raman spectroscopy (SERS), according to a recent study published in Analytical Chemistry (1).
Parallel double-strand DNA refers to a structural arrangement of the DNA molecule where both strands run in the same direction, unlike the antiparallel arrangement found in the classic Watson-Crick model (2). In this configuration, both strands of the double helix have their 5' to 3' directionality oriented in the same direction (2). This conformation has been proposed in some non-canonical DNA structures and synthetic DNA molecules, although it contrasts with the predominant antiparallel orientation found in natural DNA. The implications of parallel double-strand DNA extend to its potential use in nanotechnology, particularly in DNA-based computing, molecular machines, and materials science (2). Researchers seek to understand the unique properties and behaviors of parallel double-strand DNA because the consensus is that it could unlock novel applications in biotechnology and nanoscience, driving innovation in various fields.
Read More: Studying Epigenetic Modifications of DNA Using UV Resonance Raman Spectroscopy
However, the lack of robust characterization techniques has hindered its exploration. The research team, led by lead authors Xiaoxuan Xiang, Yang Tian, and Xinhua Guo, attempted to present a solution to this ongoing issue. Comprised of researchers from Jilin University and East China Normal University, the research team demonstrated a novel method that could characterize parallel dsDNA using SERS with gold nanoparticles modified by bromine and magnesium ions (Au BMNPs) as substrates (1).
In their study, the research team showed the success of their new method could help improve molecular biology, diagnosis, therapy, and molecular assembly. The researchers showed that there was a series of intensive characteristic Raman bands specific to three types of parallel dsDNA (1). These structures were stabilized by various molecular interactions, including reverse Hoogsteen A+·A+ base pairs, hemiprotonated C+·C and G·G minor groove edge interactions, Hoogsteen A·A base pairs, and Hoogsteen T·A and C+·G base pairs (1).
The technique demonstrated in this study distinguished itself from traditional ones in two important ways. For one, the method used in the study was able to distinguish parallel dsDNA from antiparallel structures (1). The second key advantage is that it was able to identify the orientation of strands within the dsDNA (1). This level of precision in DNA analysis is significant because it had never been achieved before, according to the authors that led the study (1). As a result, their method could be valuable in fields that require precise DNA characterization.
Read More: Optimizing SERS DNA Sensors: Impact of Sandwich-Type Construction and Plasmonic Metal Revealed
The implications of this research are broad. In molecular biology, it could lead to a deeper understanding of DNA-based processes, such as replication and transcription (1). In diagnostics, the ability to accurately differentiate between various DNA conformations could enhance the detection of genetic mutations and diseases. Moreover, in therapy, it could facilitate the design of more targeted and effective treatments (1).
As this technique gains traction, it is expected to catalyze further advancements in DNA analysis, which is critical for our understanding of biological functions.
(1) Zhang, Y.; Xiang, X.; Bao, Y.; et al. Characterization of Parallel-Stranded DNA Duplexes by Surface-Enhanced Raman Spectroscopy and Bromide-Modified Gold Nanoparticles. Anal. Chem. 2024, 96 (12), 4884–4890. DOI: 10.1021/acs.analchem.3c05356
(2) Szabat, M.; Kierzek, R. Parallel-Stranded DNA and RNA Duplexes - Structural Features and Potential Applications. FEBS J. 2017, 284 (23), 3986–3998. DOI: 10.1111/febs.14187
Best of the Week: Chewing Gum with SERS, Soil Carbon Analysis, Lithium-Ion Battery Research
January 17th 2025Top articles published this week include a Q&A interview that discussed using surface-enhanced Raman spectroscopy (SERS) to investigate microplastics released from chewing gum and an article about Agilent’s Solutions Innovation Research Award (SIRA) winners.
New SERS-Microfluidic Platform Classifies Leukemia Using Machine Learning
January 14th 2025A combination of surface-enhanced Raman spectroscopy (SERS) and machine learning on microfluidic chips has achieved an impressive 98.6% accuracy in classifying leukemia cell subtypes, offering a fast, highly sensitive tool for clinical diagnosis.
Machine Learning-Enhanced SERS Technology Advances Cancer Detection
January 13th 2025Researchers at the Chinese Academy of Sciences have developed an optical detection strategy for circulating tumor cells (CTCs), combining machine learning (ML) and dual-modal surface-enhanced Raman spectroscopy (SERS). This approach offers high sensitivity, specificity, and efficiency, potentially advancing early cancer diagnosis.
Surface-Enhanced Transmission Raman Spectroscopy (SETRS) Enhances Pharmaceutical Quality Control
January 7th 2025Researchers from the University of Liege have demonstrated the potential of surface-enhanced transmission Raman spectroscopy (SETRS) for detecting impurities in pharmaceuticals. The study highlights SETRS’s superior sensitivity, precision, and efficiency in quantifying toxic impurities like 4-aminophenol (4-AP), offering a promising alternative to traditional methods.
Edible Oil Testing: Handheld Raman Spectroscopy Offers Quick, Reagent-Free Answers
January 6th 2025Researchers have developed a rapid, reagent-free method to estimate the saponification value (SV) of edible oils using handheld Raman spectroscopy. This innovative approach simplifies oil quality testing, cutting time and costs while enhancing accuracy and portability.