A new study presents a novel WDXRF approach in determining carbon, oxygen, hydrogen, and nitrogen content in coal.
In a recent study published in Spectrochimica Acta Part B: Atomic Spectroscopy, a novel X-ray fluorescence (XRF) method was combined with partial least squares (PLS) regression to determine light element content in coal. Carbon, oxygen, hydrogen, and nitrogen were studied. The researchers executing the study collected information that could be utilized by researchers to improve semi-quantitative methods of XRF based on fundamental parameters (FP) (1).
XRF analysis has been regularly used in coal analysis. However, the technique alone does have specific limitations. For example, traditional XRF analysis has limitations in quantifying specific light elements (1). To overcome the limitations of traditional XRF analysis, the researchers presented a way to improve on the technique by using wavelength dispersive XRF (WDXRF) scattering spectra to quantify carbon, oxygen, hydrogen, and nitrogen in coal samples (1).
The research team prepared a set of 25 coal samples for analysis. These samples underwent precise grinding, drying, and weighing, followed by compression into reusable steel rings (1). The spectra of coherent and incoherent scattering of the primary X-Ray radiation were then analyzed, revealing hidden differences that were previously unexploited for quantification of these crucial elements (1).
By utilizing PLS regression, the team createdcalibration curves for the concentrations of carbon, oxygen, hydrogen, and nitrogen in coal samples (1). Only WDXRF was needed to determine these elemental concentrations, and researchers did not need to employ special crystal analyzers (1). The researchers also discovered that the quantification of hydrogen can be done indirectly through scattering, despite it not having the characteristic spectral lines (1).
The results of this study enhance the semi-quantitative techniques of XRF based on fundamental parameters. This holds promise for improving coal quality assessment, as well as aiding in a better understanding of coal composition and its environmental implications.
This research determined that the differences in scattering spectra carry information about the concentration of light elements. They also concluded that the PLS model improves FP analysis for coal samples with high light element content.
(1) Sverchkov, I. P.; Matveeva, V. A.; Chukaeva, M. A. Determination of carbon, oxygen, hydrogen and nitrogen content in coals using WDXRF scattering spectra. Spectrochimica Acta Part B: At. Spectrosc. 2023, 207, 106738. DOI: 10.1016/j.sab.2023.106738
The Advantages and Landscape of Hyperspectral Imaging Spectroscopy
December 9th 2024HSI is widely applied in fields such as remote sensing, environmental analysis, medicine, pharmaceuticals, forensics, material science, agriculture, and food science, driving advancements in research, development, and quality control.
Portable and Wearable Spectrometers in Our Future
December 3rd 2024The following is a summary of selected articles published recently in Spectroscopy on the subject of handheld, portable, and wearable spectrometers representing a variety of analytical techniques and applications. Here we take a closer look at the ever shrinking world of spectroscopy devices and how they are used. As spectrometers progress from bulky lab instruments to compact, portable, and even wearable devices, the future of spectroscopy is transforming dramatically. These advancements enable real-time, on-site analysis across diverse industries, from healthcare to environmental monitoring. This summary article explores cutting-edge developments in miniaturized spectrometers and their expanding range of practical applications.
Analyzing Oxygen Vacancy Using X-Ray Photoelectron Spectroscopy
November 26th 2024A new study published in the Journal of the European Ceramic Society introduces three XPS methodologies for accurately quantifying oxygen vacancies in metal oxides, challenging traditional misinterpretations and advancing material science research.
Handheld X-Ray Technology Unveils New Forensic Tool
September 16th 2024A recent study by researchers at the University of Porto demonstrates the potential of handheld X-ray fluorescence spectrometers to analyze cigarette ash, providing a new method for forensic investigation. This non-destructive technique can differentiate between various tobacco brands based on the elemental composition of their ash.